Sl. No.: 20009341

Register		-	
Number	1000		-

2014

MECHANICAL AND PRODUCTION ENGINEERING (Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

MPE08

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open
 it at the commencement of the examination. As soon as the signal is received you should tear the right
 side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- You must write your Register Number in the space provided on the top right side of this page. Do not
 write anything else on the Question Booklet.
- 5. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, your Answer Sheet will not be evaluated.
- 6. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 7. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong..e.g. If for any item, (B) is the correct answer, you have to mark as follows:

- 8. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 9. The sheet before the last page of the Question Booklet can be used for Rough Work.
- Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 11. Do not tick-mark or mark the answers in the Question booklet.

- 1. A beam of uniform strength is a beam in which
 - (A) the bending moment is the same throughout the beam
 - (B) the shear stress is the same throughout the beam
 - (C) the deflection is the same throughout the beam
 - the bending stress is the same along the length of the beam.
- 2. The strain energy stored in a body of volume V and subjected to a gradually applied load which induces a stress σ is given by
 - (A) $\frac{\sigma E}{V}$

(B) $\frac{\sigma E^2}{V}$

(C) $\frac{\sigma^2}{E}V$

- $\frac{1}{2}\frac{\sigma^2}{E}V$
- 3. For ductile materials, the most appropriate failure theory is
 - maximum shear stress theory
- (B) maximum principal stress theory
- (C) maximum principal strain theory
- (D) shear strain energy theory
- 4. In an n-link mechanism maximum, possible number of elements on any of the n links, for odd value of n is
 - $(A) \quad n/2$

(B) (n-1)/2

(n+1)/2

- (D) n(n+1)/2
- 5. In an offset slider-crank mechanism with length of connecting rod *l*, crank radius *r* and offset *e*, the crank will revolve only when
 - $l \geq (r + e)$

(B) $l \leq (r - e)$

(C) l > (r - e)

- (D) l < (r + e)
- 6. Kliens construction can be used when
 - (A) crank has uniform angular velocity
 - (B) crank has non-uniform velocity
 - (C) crank has uniform angular acceleration
 - crank has a uniform angular velocity and angular acceleration
- 7. For a slider crank mechanism, the velocity and acceleration of the piston at inner dead centre will be
 - (A) 0 and 0

(B) 0 and $w^2 r$

(C) $0 \text{ and } < w^2 r$

0 and $> w^2 r$

8.	The angular velocities of two pulleys connected either by an open belt or a cross belt drive						
	are		to the in the	,			
	(A)	directly proportional			•		
	(B)	inversely proportion t		S	•		
	(C)	proportional to squar					
	(D)	proportional to squar	e root of their dia	amete	rs .		
0	Cana	n in halt drive is due to			•		
9.		p in belt drive is due to weak material of the			•		
	(A)				•		
	(B)	weak material of the		1 14			
	(D)	friction between belt		ie beit	when it passes from tight side to slack side		
10.	Proel	l Governor as compare	d to porter gover	nor	•		
	(A)	is more sensitive	,		· <u></u>		
	(B)	is less sensitive			•		
	(C)	requires weights of si	naller size	. – . –	-		
•	D	is more sensitive and	requires weights	s of sr	maller size		
	0	:4:	· .	u záža	~£.		
11.	Sensitiveness of a governor is defined as the ratio of (A) mean speed to range of speed						
	(A)						
	(0)	range of speed to mea		9 W C C J			
	(C)	maximum equilibrium					
	(D)	· minimum equilibrium	n speed to mean	speea	•		
12.	The frequency of the secondary forces as compared to primary force is						
1.2.	(A)	one half	, ioreco ao our	Par	double		
	(C)	one fourth		(D)	one third		
	(0)	one tour th		(D)	, one time		
13.	Natu	ral frequency of a syste	em is due to		5 🕾		
•	(1)	free vibration	•	(B)	forced vibration		
	(C)	resonance		(D)	damping		
14.	What		a amand subject	ia laa	than anitical around the phase difference		
14.		een displacement and c	_		s than critical speed, the phase difference		
		180°	entinugai torce	(D)	90°		
	(A)			(D)			
	. (C)	45°			0°		
15.	A sha	aft with two rotors at it	's ends will have				
	(A)	three nodes	or can be have and,	(B)	two nodes		
	· (C)	one node	٩	· (D)	zero node		
			•	1-1			
MPE	208		. 4		٥		

16.		While calculating the stress induced in a closed helical spring. Wahl's factor is considered to account for						
	(24)	the curvature and stress conce	antrate.	d effec	t	•		
	(B).	shock loading	Hitrate	d effec	,			
	(C)	fatigue loading	~		2			
·								
	(D)	poor service conditions			NC	·		
17.	been	t spiral spring mode of strip of subjected to a winding couple situde of winding couple is near	which	-				
	· (A)	20.8 Nmm		(B)	41.6 Nmm			
. 3	S	62.5 Nmm		(D)	83.3 Nmm			
18.		e designing a screw in a screw are taken as	jack ag	gainst	buckling failure, the end o	onditions for a		
•	(A)	both ends fixed		(B)	both ends hinged			
	(C)	one end fixed and other end hi	nged	DY	one end fixed and other en	d free		
				2				
19.	If the	size of the flywheel in a punchi	ng mac	hine i	s increased, then	• •		
	(A) ·	fluctuation of speed as well as	fluctua	tion o	f energy will decrease			
	B	fluctuation of speed will decre	ase but	t the f	luctuation of energy will inc	rease		
	(C)	fluctuation of speed will increa	ise and	the fl	uctuation of energy will dec	rease		
	(D)	fluctuation of speed as well as	fluctua	tion o	f energy will increase			
						•		
20.	When	the pitch angle in Bevel gears	is less t	than 9	0° it is referred to as an	•		
	4	external Bevel gear	5	(B)	internal Bevel gear			
	(C)	crown gear	•	(D)	meter gear			
					•			
21.	In or	der to increase the angle of wrap	o it is p	referr	able to go in for			
	SAS	Crossed belt drive	. 8.	(B)	Open belt drive			
	(C)	Horizontal open belt drive		(D)	Vertical open belt drive			
		:			- 1	2		

22.	One	One of the disadvantages of a hydraulic shaper compared to the mechanical shaper is								
7	SAY	stopping point of the cutting stroke can vary depending upon the resistance offered to cutting								
	(B)	less strokes per minute								
	(C)	power available varies	s during the cut	ting s	troke .					
	(D)	cutting speed remains	constant throu	ghout	the cutting stroke	•				
. 1					·					
23.		The lip angle used in a drill for drilling the Hard materials								
•	(A)	128°	136°.							
	(C)	90°		(D)	60°					
24.	Reci	rculating ball screws are	used because							
	(A)	(A) they are easy to manufacture								
	(B)	power required for dri	iving them is sn	nall dı	e to small friction	*				
	(C)	frictional resistance is	more compare	d to A	CME threads	. *				
	(D)									
		4								
25.	The	The best machine tool to cut an internal spline in steel is								
3 .5.	(A)	milling machine		(B)	slotting machine					
	(C)	lathe		(D)	grinding machine					
	(-/	•	*	(-)		•				
0.0	The	autting tool in a milling	m/o io hold in n	onition	a h	1.7				
26.	(A)	cutting tool in a milling arbor	m/c is neid in p			×* ·				
	(0)			(B)	spindle .					
	(C)	column	,	(D)	knee	• •				
27.	The	cutting speed for reamin	ng aluminium a	nd its	allovs is					
	40	45-70 m/min		(B)	15-20 m/min	•				
	(C)	10-12 m/min		(D)	5–20 m/min					
28.	Dept	th of cut for roughing op	eration normall	y vari						
	(A)	5 mm to 10 mm		(B)	1 mm to 5 mm	· · · · · · · · · · · · · · · · · · ·				
	(C)	0.2 mm to 1 mm		(D)	0.01 mm to 0.2 mm	•				
29.	The steel		utting speed in	metre	es per minute for HSS too	ol for cutting mild				
	(A)	15		(3)	30					
	(C)	60		(D)	90					
	(-)			/						

- 30. EDM stands for
 - (A) Energy Discharge Method
 - (C) Energy Direct Machining

Electro-Discharge Machining

- (D) Efficient Direct Method
- 31. In USM process, the cutting rate will be faster, if amplitude of vibration is
 - (A) minimum

maximum

(C) constant

- (D) normal
- 32. In ECM process, the MRR is given by
 - (A) $\frac{\text{F.I}}{\rho.\text{A.V}}$

(C) $\frac{\text{F.}\rho.\text{A.V}}{\text{I.At}}$

- (D) $\frac{\text{F.I.At}}{\rho.\text{A.V}}$
- 33. In ECG process, a continuous steam of non-corrosive salt solution is passed through work and tool. This solution acts as
 - (A) an electrolyte

(B) a coolant

-) an
 - an electrolyte and coolant
- (D) dielectric medium
- 34. The cutting rate in mm/min for LBM process is equal to
 - (A) $\frac{C \times P \times t}{E \times A}$

(B) $\frac{P \times t}{C \times E \times A}$

(C) $\frac{\mathbf{E} \times \mathbf{A} \times \mathbf{t}}{\mathbf{C} \times \mathbf{P}}$

- $\frac{\mathbf{C} \times \mathbf{P}}{\mathbf{E} \times \mathbf{A} \times \mathbf{t}}$
- 35. Operating characteristic curve in sampling plan is drawn between
 - (A) defective items and total number of items
 - (B) no. of accepted items and total number of items

probability of acceptance and percentage defective

- (D) no. of rejections and percentage defective
- 36. The following surface roughness parameter is expressed in percentage
 - (A) Ra

(B) R_p

(C) R_q

10) to

37.	The allowance factor in a time study is to (A) adjusts normal time for errors and rework				
	(B) adjusts standard time for lunch breaks adjusts normal time for personal needs, unavoidable delays and fatigue allows workers to rest every 20 minutes				
38.	The time study of a work operation at a restaurant yielded an average observed time of 9 minutes. The analyst rated the observed worker at 90%. The normal time of this operation is (A) 9 minutes (B) 81 minutes (C) 90 minutes				
39.	Aggregate planning is concerned with quantity and timing of production in the (A) short term (B) intermediate term long term (D) medium term				
40.	Five jobs are to be processed through two work centres. The time for processing each job is given below. Select the sequence in order to minimize the total processing time				
	(A) ADBCE (C) BADCE (D) BEDCA (D) BDECA				
41.	High volume production of assembled products is most closely associated with which one of the following layout types? (A) cellular layout (B) fixed position layout (C) process layout product layout				
42.	Cycle counting in inventory (A) provides a measure of inventory turnover (B) assumes that all inventory records must be verified with the same frequency is a process by which inventory records are periodically verified provides annual demand				
43.	The purpose of the stepping store is to (A) develop the initial solution to a transport problem (B) identify the relevant costs in a transportation problem determine whether a given solution is a feasible or not assist one in moving from an initial feasible solution to the optimal solution				
44.	A feasible solution to a linear programming problem must satisfy all of the problem's constraints simultaneously need not satisfy all of the constraints, only some of them (C) must not be a corner point of the feasible region (D) must give the maximum possible profit				

45. The factors influencing job design is (A) individual differences (B) technology involved (C) organization structure and internal climate					
	Di	individual difference, technology			, and internal climate
46.	Choo	se the wrong statement			
		most commonly used tests in staffi	ing can be		
4	(A)	intelligence tests	(B)	proficiency and apti	itude tests
	· (C)	personality tests	1	toughness test	
47.	The i	managerial function of controlling	is		
	(A)	the process of predicting the der		•	•
	(B)	the measurement of satisfaction the measurement and correction			
-	(D)	process of making the work envi			
			-		
48.		r of mass 150 kg is travelling on the car is ————— (Take μ	= 0.45).		The time needed to
	(4)	t = 2.26 sec		t = 3.20 sec	
	(C)	t = 3.8 sec	(D).	t = 4.2 sec	× .
49.		torist travelling at a speed of 18 F			kes and comes to rest
		skidding 75 m. The time required			V 6 - 7 - 7
	(A)	t = 30.25 sec t = 28.84 sec		t = 29.94 sec	,,
	· (C)	t – 20.04 sec	(D).	t = 26.22 sec	
50.		rticle is projected with an initial ve maximum height attained by the p		m/sec at an angle of	75° with horizontal.
	(A)	171.19 m	(B)	185.22 m	;
	(C)	221.11 m	(D)	198.20 m	
					sealberdud)
51.		th to radius ratio $\frac{l}{r}$ of a solid cyl		ch that the moment	s of inertia about the
		tudinal and transverse axes are eq	ual is	<u> </u>	
	(A)	1	(5)	√3	
	(C)	$\sqrt{5}$.	(D)		
52.	Ratio	of moment of Inertia of a circular	body abou	t its x axis to that al	out y axis is
	(A)	0.5	(B)	1.0	
	(C)	1.5	(D)	2.0	
53.	The	motion of a body moving on a c	urved path	n is given by a equa	ation $x = 4 \sin 3t$ and
		$\cos 3t$. The resultant velocity of th			2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1
	(A)	30 m/sec	(B)	24 m/sec .	•
	The state of the s	12 m/sec	(D)	40 m/sec	
*		4	0		MDEGO

- 54. The heating of wet steam at constant temperature till it becomes dry saturated is similar to that of heating at a

 (A) constant volume
 (C) constant entropy

 (D) constant enthalpy
- 55. The dryness fraction of steam is equal to

Where $M_g = Mass$ of dry steam

 $M_f = Mass of wet steam$

- 56. With the increase of pressure
 - (A) The boiling point of water decreases and enthalpy of evaporation increases
 - The boiling point of water increases and enthalpy of evaporation decreases
 - (C) Both the boiling point of water and enthalpy of evaporation decreases
 - (D) Both the boiling point of water and enthalpy of evaporation increases
- 57. The air standard efficiency of an Otto cycle is given by

(C)
$$1 - \frac{1}{(r)^{\gamma - 1}}$$
 (B) $1 + \frac{1}{(r)^{\gamma - 1}}$ (C) $1 - (r)^{\gamma - 1}$ (D) $1 + (r)^{\gamma - 1}$

Where (r) = compression ratio

- 58. The entropy may be expressed as a function of
 - Pressure and temperature (B) Temperature and volume (C) Heat and work (D) Internal energy
- 59. The heating of a gas at constant pressure is governed by
 - (A) Boyle's law . (B) Charles' law (C) Gay- Lussac law (D) Joule's law
- 60. Which of the following parameter is 100 CC in a 100 CC engine?
 - (A) Fuel tank capacity
 (B) Lubricating oil capacity
 (Swept volume
 (D) Cylinder volume

61.	spee		e diamete	s a mean effective pressure of 6 bar. The
		6.7 KW	power us	13.3 KW
	(A) (C)	26.6 KW	(D)	39.9 KW
	(0)	20.0 KW	(D)	39.9 KW
62.	The	knocking tendency in C.I. engine in	creases w	ith
	(4)	Decrease of compression ratio	(B)	Increase of compression ratio
	(C)	Increase of Inlet air temperature	(D)	Increase of cooling water temperature
63.	An a	urcraft cannot be designed without t	he part o	f
	(A)	Turbine	(B)	Compressor
-= ((0)	Combustion chamber	(D)	Propeller
64.	Shoo	ek effect in a CD nozzle is felt in		
	(A)	Divergent portion	(B)	Inlet portion
	(C)	Convergent portion	(D)	Throat portion
				-
65.	The	thrust coefficient in rocket propulsion	n is com	outed by using the following values
	(A)	Combustion pressure and throat a	area of no	zzle ·
	(B)	Combustion pressure and exhaust		
1	(0)	Combustion pressure, thrust and	nozzle th	roat area
	(D)	Thrust, effective exhaust velocity		
- 1	. ,			
66.	Fuel	oxidizer combination for hybrid pro	pellant ro	ockets is
	(A)	Liquid hydrogen - Liquid oxygen		
	(B)	Lithium hydride (LiH) - Chlorine	trifluorid	le (ClF ₃)
10	(C)	Hydrazine - Liquid Fluorine		0
	(D)	Alcohol – WFNA		•
	()	•	*	
67.	This	engine is preferable in the lower ra	nge of spe	eed
	(A)	Ram Jet engine		Turboprop engine
	(C)	Turbofan engine	(D)	Turbo Jet engine
	/			
68.		e flight speed is 140 m/sec and Jet viency is	velocity is	140 m/sec, then the maximum propulsive
	(A)	10 %	PY	100 %
	(C)	50 %	(D)	75 %
	(0)	00 78	. (D)	10 70
69.	The	total temperature and pressure in a	n isentro	nic flow of gases
oo.	(A)	Increases then decrease	· (B)	Decreases then increase
•	(C)	Increases continuously	(D)	Constant
	(0)	increases continuously	(0)	
٥			11	MPE08
-			**	[Turn over

•	(A)	DPT is 20°							
	(3)	Relative humidity is 100%							
3	(C)	Specific humidity is 100 gm/kg	g of dry air						
	(D) ·	These can never be equal		•					
		·	1						
71.	One	ton of refrigeration is equivalent	to SI units o	of :					
•	(A)	1 KW	(B)	2.5 KW :					
	C	3.5 KW	(D)	5.0 KW					
-		· ·							
72.	In Re	efrigeration system, expansion d	evice is incor	porated between					
	(A)	Compressor and condenser	(B)	Compressor and evaporator					
	(C)	Condenser and evaporator	(D)	Condenser and filter					
	1	M. Committee of the Com							
73.	The C	COP value of refrigerant ammon	nia						
	(A)	2.56	(B).	4.49					
	SON	4.76	· (D)	5.09					
1									
74.		hich section of the vapour comperature?	ression cycle	e there is abrupt changes in pressure and					
	(A)	Evaporator	(B)	Expansion value					
	(C)	Condenser outlet	(D)	Drier					
75 .	The o	condition of refrigerant before a	nd after the	expansion in a vapour compression system					
	is								
	(A)	Wet vapour, very wet vapour							
	(B)	Wet vapour, dry saturated vap							
	(C)	(C) Very wet vapour, high pressure saturated liquid							
	(0)	High pressure saturated liquid	i, very wet va	apour					
76.		the sonic velocity (C) for the $36 \ N/cm^2$	crude oil o	of specific gravity 0.8 and bulk modulus					
	(A)	C = 1500 m/sec	(8)	C = 1383 m/sec					
٠.	(C)	. C = 980 m/sec	(D)	C = 1291 m/sec					

Dry bulb and Wet bulb temperature will be equal when

70.

- 77. The Bernoulli's equation can take the form
 - (A) $\frac{P_1}{p_1} + \frac{V_1^2}{2g} + Z_1 = \frac{P^2}{p_2} + \frac{V_2^2}{2g} + Z^2$
- (B) $\frac{P_1}{p_1 g} + \frac{V_1^2}{2} + Z_1 = \frac{P^2}{p_2 g} + \frac{V_2^2}{2} + Z^2$
- (C) $\frac{P_1}{p_1g} + \frac{V_1^2}{2g} + Z_1g = \frac{P^1}{p_2g} + \frac{V_2^2}{2g} + Z_2g$ $\frac{P_1}{p_1g} + \frac{V_1^2}{2g} + Z_1 = \frac{P^2}{p_2g} + \frac{V_2^2}{2g} + Z_2$

- 78. Hydraulic jump is used for
 - Increasing the flow rate (A)
 - (C) Reducing the velocity of flow
- Reducing the flow rate
 - Reducing the energy of flow
- 79. Which of the following fluid is heaviest?
 - (A) Air
 - (C) Glycerine

- Castor oil
- Carbon tetra chloride
- 80. Dynamic viscosity (μ) has the dimensions as
 - $-MLT^{-2}$ (A)
 - $MLT^{-1} T^{-2}$ (C)

- In axial flow fans and turbines fluid enters and leaves as follows 81.
 - radially, axially

axially, axially

axially, radially

- combination of axial and radial
- For a given head the discharge through a pelton turbine with increase in speed 82.
 - (A) Decreases .

(C) Does not change

- First increases then decreases
- 83. Francis and KAPLAN turbines fall under the category of
 - Impulse turbines (A)

B) Reaction turbines

(C) Axial flow turbines

- Mixed flow turbines
- Multistage centrifugal pumps are used for 84.
 - High discharge requirements (A)
 - (C) Obtaining low discharge
- Obtaining high head
- Obtaining low head

85.	The c	correction factor of	multipass count	erflow	hea	at exchanger depends on .				
	(A)	Fluid properties		•						
•	(B)	(B) Geometry alone								
	Temperature of Inlet and outlet fluid streams only									
-	(D)	Mass flow rates o	f hot and cold fla	uid stre	ean	is				
			-	,						
86.	Cold	water (C. = 4.18 I	KJ/kg°C) enters	a hea	at e	exchanger at 15°C at a rate of 0.5kg/s,				
						nat enters the heat exchanger at 50°C at a				
						sfer rate in this heat exchanger is				
	(A)	51.1 kW		a	2	63.0 kW				
	(C)	66.8 kW		0	D)	73.2 kW				
		00.0 2.1		(-	-,					
87.	In a	narallal flow host	evolunger the	NTTI	10	calculated to be 2.5. The lowest possible				
or.		tiveness for this hea		1110	10					
•	(A)	10 %		(1	B)	27 %				
	(C)	41 %		9	8	50 %				
	:				5					
88.	Cons	ider a surface at	-5°C in an env	ironme	ent	at 25°C. The maximum rate of heat that				
		e emitted from this								
	(A)	$0 W/m^2$	•	. 0	37	$155 \ W/m^2$				
•	(C)	293 W/m^2		(1	D)	$354 \ W/m^2$				
					,					
89.	Hudn	aulia Diamatan D	of airealar tubo	0						
05.	Hydr	aulic Diameter D_h		· ·	,	. ·				
	(D)	Equal to diameter								
	(B)	Half of the diame								
•	(C)	Twice the diameter				·				
	(D)	Four times the di	ameter of the tu	pe-						
90.	The r			with h	nyd	rodynamic boundary layer is				
1	(A)	Reynolds number			B)	Prandtl number				
	(C)	Biot number	-	(1	D)	Nussel number				
MPE	08	8		14	•	. •				

- 91. The efficiency of chimney is approximately
 - (A) 80 %

(B) 40 %

(C) 20 %

- 0.25 %
- 92. The maximum efficiency for Parson's reaction turbine is given by
 - (A) $\eta_{\text{max}} = \frac{\cos \alpha}{1 + \cos \alpha}$
 - (B) $\eta_{\text{max}} = \frac{2\cos\alpha}{1+\cos\alpha}$
 - $\eta_{\text{max}} = \frac{2\cos^2\alpha}{1+\cos^2\alpha}$
 - (D) $\eta_{\text{max}} = \frac{1 + \cos^2 \alpha}{2\cos^2 \alpha}$
- 93. Most high speed diesel engines work on
 - (A) Diesel cycle

(B) Carnot cycle

Dual combustion cycle

(D) Otto cycle

- 94. Demand factor is defined as
 - (A) Average load/ maximum demand
 - Maximum demand / connected load
 - (C) Connected load / maximum demand
 - (D) Maximum demand × connected load
- 95. In a 4 cylinder petrol engine the standard firing order is
 - (A) 1-2-3-4

(B) 1-4-3-2

(C) 1-3-2-4

(0) 1-3-4-2

30.	VV 111	ch of the following thermocouples	nas the low	vest measuring range?	•
	(A)	Iron – Constantan	(B)	Chromel – Alumel	
	(e)	Copper - Constantan	(D)	Chromel – Constantan	
,					
97.	Whi	ch of the following is a positive dis	splacement	device?	
	(A)	Ultrasonic flow meter	B	Turbine flow meter	
	(C)	Laser Doppler Anemometer	(D)	Hot wire Anemometer	•
98.	A Ro	otameter can be used			
	(A)	Only in vertical orientation (dir-	ection)		
	(B)	Only in horizontal orientation (direction)		•
	(C)	In any orientation (direction)		•	
•	(D)	For zero orientation (direction)			
99.	A ho	t wire anemometer is used to mea	sure		
	(A)	Mean flow velocity			•
	(B)	Fluctuating component of veloci	ties ·	•	
	(0)	Both mean and fluctuating comp		elocities	
	(D)	Constant velocity		•	
100.	In co	ntrol system terminology PID con	trol stands	for	
	(A)	Proportional Integrated Decima	1 .		
	(B)	Proportional Intelligent Definite	•		
	(C)	Proportional Integral Derivative	1 (4)	. '	
	(D)	Principal Intelligent Derivative			
	In am	alactusma martia (I	.]]]4		
101.	man	electromagnetic flow meter the in			
-	((1)	Flow rate	(B)	Square root of flow rate	
MEDE	(C)	Square of flow rate	(D)	Logarithm of flow rate	
MPE	08	•	16	•	

- Maximum Principal Stress Theory $\sigma_1 = \sigma_2$
- Maximum Principal Strain Theory $\frac{\sigma_1}{E} \frac{\mu \sigma_2}{E} = \frac{\sigma_y}{E}$

Total Strain Energy Theory $\frac{\sigma_1^2}{2E} + \frac{\sigma_2^2}{2E} = \frac{\sigma_y^2}{2E}$.

(A) K

(C) K/2 (D) K/4

If principal stresses in a plane stress problem are $\sigma_1 = 100\,$ MPa and $\sigma_2 = 40\,$ MPa, then magnitude of the maximum shear stress (in MPa) will be,

(A) 176.2 196

30

(D) 981.0

105. Consider the following statements:

Assertion (A): An isotropic material is always homogeneous.

: An isotropic material is one in which all the properties are same in all the directions at every point.

Of these statements,

both (A) and (R) are true and (R) is the correct explanation of (A)

- (B) both (A) and (R) are true but (R) is not a correct explanation of (A).
- (C)(A) is true but (R) is false
- (D) (A) is false but (R) is true

106. The measurement of frictional power by William's Line is applicable only to

- (A) SI engines at a particular speed
- CI engines at a particular speed
- (D) None of the above (C) Any engine at a particular speed only

Maximum shear stress developed in a solid circular shaft subjected to pure shear is 107. 240 MPa. If the diameter of the shaft is doubled, then the maximum shear stress developed due to the same torque is

120 MPa ·

(B) 60 MPa

30 MPa

(D) 15 MPa

In a beam of I cross-section, subjected to a transverse load, the maximum shear stress is developed

- AT at the centre of the web
- (B) at the top edge of the top flange
- at the bottom edge of the top flange (D) at one third distance along the web

109.	The vessel pitches with an angular velocity of 0.5 rad/sec. Calculate the gyroscopic coup during the rise of bow. Assume radius of gyration of the rotor as 25.4 cm.				
	(A)	6451.61 N.m	(B)	6756.11 N.m	
	(C)	5404.89 N.m	(D)	8107.34 N.m	
110.		nk of radius 12 cm is rotating at 60 r angential acceleration of the crank is	pm wi	ith an angular acceleration of 50 rad/sec ² .	
•	(A)	4.75 m/s^2	(B)	5.2 m/s ²	
	(8)	6 m/s ²	(D)	7.4 m/s^2	
		•		· · · · · ·	
111. '	DA =			0 mm; BC = $300 mm$; CD = $400 mm$ and fixed for the resulting mechanism to be a	
	(A)	AB	(B)	BC	
	(C)	CD	(D)	DA	
		•			
112.	Which	h of the following systems has 8 links?		•	
	(A)	Hart mechanism	955	Peaucelliar mechanism	
	(C)	Whitworth Quick return mechanism	(D)	Scotch yoke mechanism	
	(-)		(2)		
113.		the pitching motion causes the bow en from stern) the gyroscopic effect ten		se, the rotor rotating in clockwise sense	
•	(A)	turn the ship towards port side	(B)	turn the ship towards star-board side	
	(C)	depress the stern	(D)	raise the stern	
114.		a four wheeler moving forward at a s l(s) that tends to leave the ground is	peed a	above critical takes a turn to the right the	
		outer front wheel	(B)	outer rear wheel	
	(0)	both the inner wheels	(D)	both the outer wheels	
				•	
115.		rictional torque, transmitted in case of $v= ext{Total}$ axial load, $\mu= ext{coefficient}$ of	_	ivot bearing for uniform pressure is equal on, $R = \text{Radius of bearing surface}$	
	(A)	$\mu w R$	(B)	$\frac{2}{3} \mu w R$ $\frac{1}{2} \mu w R$	
	((")	$\frac{1}{2}\mu w R$	(D)	1 p	
` `	(C)	$\frac{3}{3}\mu\omega \Lambda$	(D)	$\frac{1}{2}\mu w \mathbf{R}$	

116. The equivalent coefficient of friction for V threads is

- (A) equal to actual coefficient of friction
- (B) less than actual coefficient of friction
- greater than actual coefficient of friction
- (D) not related to the actual coefficient of friction

117	of m			is running steadily with a certain amount speed are doubled, how does the minimum
į ,	(A)	remains unchanged	·	
	(B)	gets doubled		
	(C)	gets reduced to one fourth of origin	nal value	
	(D)	gets reduced to half of original va	lue	
1		:		
118		cm shaft turns 900 rpm in a journa × 10 ⁴ N, the bearing pressure will be	-	of length 20 cm. If the load on the bearing
	(A)	75 N/cm ²	(B)	100 N/cm ²
	(C)	170 N/cm ²	(D)	32 N/cm ²
119	. Whic	ch of the following does not belong to	the cate	gory of sliding contact bearing?
	(A)	picot bearing	(B)	ball bearing
•	(C)	bush bearing	(D)	foot step bearing
. 120	lubri			a bearing pressure of 100 N/cm ² . If the bise, the bearing characteristic number will
· ·	(A)	29.8	(B)	13.5
	(C)	9.94	(D)	2.85
121	longe		has an ir	cm, thickness 1 cm with the length of the nitial radius of curvature equal to 150 cm, g is
	(K)	3 cm	(B)	4 cm
	(C)	6 cm	. (D)	8 cm
4				
122	mean			ibuted on another rim type flywheel whose er, then energy stored in the latter at the
•	(A)	four times the first one	(B)	same as the first one
	10	one fourth of the first one	' (D)	one and a half times the first one
0			19	MPE08

123.	Herringbone gears are used to (A) avoid interference eliminate axial thrust	(B) avoid the effect of dynamic load (D) reduce wear of teeth
124.	For maximum power transmission in a be $T_{\rm max}$ = Maximum tension T_1 = Tight side tension T_2 = Slack side tension (A) $T_{\rm max}$ = mV ² (C) $T_{\rm max}$ = $\frac{T_1 + T_2}{2}$	elt drive the condition is $T_{\text{max}} = 3 \text{mV}^2$ (D) $T_{\text{max}} = 3 T_1$
125.	The axial thrust on worm (W _A) is given by where W_T = Tangential force acting on the ϕ = Pressure angle.	•
·	$\lambda = \text{Lead angle}.$ (A) $W_A = W_T \cdot \tan \phi$ (C) $W_A = W_T \cdot \tan \lambda$	(B) $W_A = W_T / \tan \phi$ $W_A = W_T / \tan \lambda$
126.	The cross-section most commonly used in elliptical (C) I-section	flat belt drive pulleys is (B) rectangular (D) circular
127.	Two mating spur gears have 30 and 90 and transmits a torque of 20 Nm. The tor (A) 6.6 Nm (C) 40 Nm	teeth respectively. The pinion rotates at 1200 rpm rque transmitted by the gear is (B) 20 Nm 60 Nm
128.	In a horizontal belt drive, it is preferable (A) tight side on the top slack side on the top (C) tight side tension twice slack side (D) equal tensions on both sides	
129.	A V-belt designated as B 4430 L _p represe (A) A vee belt of basic length 4430 mm (B) A vee belt of B cross-section and periods (C) A vee-belt of B cross-section and necessary (D) A vee-belt of B cross-section and 4	itch length 4430 mm ominal inside length 4430 mm

MPE08

130.

12 threads is

60

12

(A)

(C)

Reduction ratio of a worm gear drive with a 60 teeth wheel and a double start worm with

(D)

30 · 5

0

		climb	((B)	up .		
	(C)	drop		(D)	face	*	•
		••				•	
132.		milling operation, depth of power consumption will inc		th o	f cut are cons	tant, if feed r	ate is doubled,
	(A)	100%	. (B)	90%	1	
- 1	(9)	50%	• (D)	30% .		
			,	,			
133.		brasive jet machining, as ases, the material removal r		be	tween the no	ozzle tip and	work surface
	(A)	increases continuously				ē i	•
	(B).	decrease continuously	8			*	,
	(C)	decreases, becomes stable	and then incr	eas	es .		
	D	increases, becomes stable	and then decr	eas	es _ ·	- 4	
	8		· · · · · · · · · · · · · · · · · · ·				
134.	The ;	process of removing metal	by feeding the	he v	work past a r	otating multi	point cutter is
	(A)	broaching	. (B) :	sawing		
	SON	milling	. (D)	grinding		
1				,			
135.	The	vear ratio for tungsten carbi	de work in E	; DM	is .		
	(A)	0.5		B) .	1.0		
	(C)	2.0	, ,	D)	3.0		•
	(9)		,				
136.		chickness of the chip is mini	mum at the l	oegi	nning of the c	ut and maxin	um at the end
	(A)	climb milling	(B	up milling	49	. 1
	(C)	down milling		D)	face milling		
			`				•
107	XX71	6 21 - 6 11 - · · ·	and the state of the state of		C-1-41-	··	0.0
137.		h one of the following proces	ses is the rev	ers		ing process?	
	(A)	EDM		D)	ECM ·		
	(C)	PAM	:	(ע	LBM 		H 8
٥ -			21		11.5	•	MPE08
							[Turn over

In which of the following milling operation the surface finish is better

	•									
138.	The f	undamental tolerance unit i in terms of	f mear	\mathbf{n} diameter D is .						
	(A)	$i = 0.45\sqrt{D} + 0.1D$	(B)	$i = 0.45\sqrt{D} + 0.01D$						
	(C)	$i = 0.45 \sqrt{D} + 0.001 D$	DI	$i = 0.45\sqrt[3]{D} + 0.001D$						
139.	$H_7 g_7$	is								
	(A)	clearance fit	(B)	interference fit						
4	(C)	shrinkage fit	(D)	transition fit						
140.	Hole The fi		and	Shaft dimension is $50.00 - 0.01$ mm. -0.03						
	(A)	clearance	(B)	interference .						
3	COY	transition	(D)	shrinkage						
141.	heta , Ta	per angle of dead centre measured in a	sine	bar is						
	where	e h - height of slip gauges L - length of sine bar	٠.							
	(A)	$\theta = \sin^{-1} h / L$	(B)	$\theta = \sin^{-2} h / L$						
	(C)	$\theta = \sin^{-1} L/h$	(8)	$\theta = \sin^{-1} h / 2L$						
142.`	The cross-sectional area of slip gauges of above 10 mm is in mm ²									
		30×5	(B)	30×9						
	COY	35×9	(D)	40 × 10						
143.	Comp	posite error of gear is measured by	s:							
	(A)	Base tangent comparator	(B)	Double Vernier						
	(C)	Gear tooth caliper	(B)	Parkinson rolling gear tester						
144.	The following is the standard press fit for easy dismantling of ferrous and non-ferrous parts assembly									
	(A)	H ₇ g ₇	(B)	H ₇ h ₆						
	(C)	H ₇ n ₆	Dy	$H_7 p_5$						
145.	Produ	Producer's risk in acceptance sampling is								
	(A)	chance of producing defective component								
•	(B)	chance of accepting the defective comp	ponen	ts by the customer						
	(C)	chance of incurring high cost								
-	Charles of the Charle	chance of rejecting the parts by the cu	stome	er of the specified quality						
	-									

146. Five jobs are waiting in a machining centre which are to be assigned to process. The processing times and due dates are given in the following table. Determine the sequence of processing according to Earliest Due Date (EDD)

Job	Job Processing one day	Job due date
A	6	8
В	2	6
C	8	18
D	3	15
E	9	23

(A) ABCDE (BADCE (B) BDACE.

(D) ECADB.

147.	Shop	loading			
*	(A)	means the assignment of dates to s	pecific j	obs or operation steps	
	(B).	is typically managed using an asser	mbly ch	art	
	C	means the assignment of jobs to wo			
	(D)	is oriented toward the management			
	1			4 4	
148.	The S	9.9 style managers			
	(02)	who display in their actions the l production	nghest	possible dedication both to peopl	e and to
	(B) ·	who are concerned only with develor for people	ping an	efficient operation and have little	concern
	(C)	who have medium concern for prod	uction a	and for people	
	(D)	who have little concern for producti			4. 1)-
	(-)	()	. 7		
- 5				1.0	
149.	Parti	cipative leadership is suitable in			•
	(A)	production organization	(B)	educational institution	
	(0)	research and development	(D)	defence organizations	,
÷					
150	Dina	the traditional non-hudgetowy contro	L dovrigo		
150.		the traditional non budgetory control Gantt charts	device	Operational audit	
	(A)		(D)		
	(C)	Milestone budgeting	(D)	Time-event network analysis	
		- · · · · · · · · · · · · · · · · · · ·			
151.	PERT	Γ was first formally applied to the pla	anning a	and controlling in	
	(A)	Titan's way	(B)	Polaris Weapon System	
	(C)	JP Morgan	(D)	Dow Jones	
		,			
152.		ange within a organization to a high	ther pos	sition that has greater responsib	ility and
	_	ring advanced skills is known as	/		
•	(A)	multiskilling	(D)	promotion	
	(C)	job enrichment	(D)	job evaluation	
153.	Tend	ency to disperse decision making aut	hority i	n an organized structure is called	
100.	(A)	distribution	(B)	sharing	
	(4)	decentralisation	(D)	leadership	
			(2)	200000	
	4.00			•	
154.	Mana	agement conflict can be addressed			
,	(A)	making the situation that causes co	nflict		
	(B)	creating motive between persons		Party 1	
	(0)	compromise			
	(D)	attempts can be made to change the	e behav	iour of manager	
*			23		MPEGS
Q			40	•	TITE TIOO

[Turn over

155.	A tor	rque of 50 N-m is applied on the	wheel operat	ing a valve. If the wh	neel is rotated	through
	two r	revolutions, work done in Newt	on-metres is g	iven by		
	(A)	100 .:	· (B)	25		· .
	(C)	314	CDY	628		
156.	Mom	ent of Inertia of the rectangle	of base 80 m	m and height 10 mr	n about its ce	entroidal
	(I_{XX})					
	(11)	$6666.66 \text{ mm}^4 = I_{XX}$	· (B)	$5827.21 \text{ mm}^4 = I_{XX}$		
	(C)	$7777.22 \text{ mm}^4 = I_{XX}$	(D)	$6826.11 \text{ mm}^4 = I_{XX}$		-
157.	The o	coefficient of restitution e is -		where V_b and V_a are	the final vel	ocities of
		oodies 'a' and 'b' after impact,				•
		b' before impact.	1			
		The second secon	(D)	$U_h - U_{\sigma}$		•
	(A)	$rac{U_a-U_b}{V_a-V_b}$. (B)	$\frac{U_b - U_a}{V_a - V_b}$	٠.	
	(0)	$V_a - V_b$		$V_b - V_a$		
	(C)	$\frac{V_a - V_b}{U_a - U_b}$		$\frac{V_b - V_a}{U_a - U_b}$		
						-
158.		tension in the cable supporting			tension where	n the lift
•	(A)	es downwards. The acceleration	(B)			
	((11)	g/3		g/2		
	(8/3	. (D)	g/4 -	•	
_				•		
159.	Steam	m super heating is done at cons	stant	25.		
in-	(1)	Pressure	(B)	Mass flow rate		-
	(C)	Entropy	. (D)	Temperature .		•
					•	
160.		steady flow reversible adiabatic	2012			
	(A)	Change in internal energy	(B)	Change in entropy		
	(0)	Change in enthalpy	· (D)	Heat transferred		
161.	In an	Isentropic process	4	-		
101.	(A).	Work done is zero	(B)	Change in internal	enerovie zero	
	(0)	Change in entropy is zero	(D)	Change in enthalpy		,
		omingo m entropy is zero	(1)			
162.	In the	e operation of steam engines th	e vapour cycle	adopted is		
		Carnot cycle	(B)	Rankine cycle		
	(8)	Modified Rankine cycle	(D)	Regenerative cycle		•

100	Mana	toot	:	A 14:	arrian dans		20	mond	+0	datammina
100.	Morse	test	111	wutt	cynnaer	engines	122	useu	w	determine

Volumetric efficiency

Brake thermal efficiency (B)

Mechanical efficiency

(D) Brake power

164. In a 4. - cylinder, 4 - stroke Diesel engine operating at 1200 r.p.m., the duration of fuel injection is 20°. The time in seconds during which fuel is injected would be

(B) $\frac{1}{180}$ secs

 $\frac{1}{720}$ secs

(D) $\frac{1}{1440}$ secs

165. The output of an I.C. Engine is measured by a rope brake dynamometer. The diameter of the brake pulley is 750 mm and rope diameter is 50mm. The dead load on the tight side is 400 N and the spring balance reading is 50 N. The engine consumes 4.2 kg/h of fuel at rated speed of 1000 rpm. Then the brake specific fuel consumption of the engine is

(A) 0.143 kg/kWh B) 0.286 kg/kWh

(C) 0.268 kg/kWh 0.134 kg/kWh

The process of increasing the mass of charge introduced into the same volume of an engine 166. is called

- Super charging

(B) Scavenging

(C) Idling Tumbling

- Rich fuel air ratio is needed
- Lean fuel air ratio is needed
- (C) -Chemically correct fuel air ratio is needed
- (D) Any fuel air ratio will do

(A). Single cylinder engine

- Multi cylinder engine
- (C) Two stroke cycle engines
- (D) Four stroke cycle engine

The theoretically correct mixture of air and petrol is approximately equal to 169.

(A) 7:1

10:1 (B)

(97 - 15:1

(D) 20:1

MPE	08	2	6	٥
	(C)	Air ·	(D)	Carbon dioxide
	(A)	Ammonia	BI	Water
176.	The F	Refrigerant R - 718 is		
		•		·
	(C)	Ice prepared from filtered water	000	Solid carbon dioxide
	(A)	Ice free from water	(B)	Ice free from dissolved air or gases
175.	Dry i	ce is		
	(C)	Heating and dehumidification	(D)	Heating and humidification
	M	Cooling and dehumidification	(B)	Cooling and humidification
174.		desired to condition the outside air for at room condition. The practical array		% RH and 45°C DBT to 50% RH and 25° at would be
	(D)	Vapour compression cycle with sub	cooling	
	(C)	Vapour compression cycle with supe		d vapour at the end of compression
	(B)	Vapour compression cycle using dry	-	
	(A)	Vapour absorption cycle		
173.	Whic	h of the following has the lowest COP	? -	
	(0)	tan (2/8)	(D)	
	(C)	$\tan^{-1}(2/3)$		$\cos^{-1}(3/2)$
	(A)	$\cos^{-1}(2/3)$	(15)	$\sin^{-1}(2/3)$
172.		ircraft moves through the atmosphere is medium is 300 m/s, the mach angle		a velocity of 450 m/s. If the speed of sound be
	(C)	Thrust coefficient	(D)	Weight flow coefficient
,	(A)	Impulse to Weight Ratio (IWR)	(D)	Specific impulse
171.		inverse of Specific Propellant Consum	ption (
	6,2		•	
	(8)	4.0	(D)	7.0
	(A)	1.5	(B)	2.0
170.	At no abou		tio of th	ne speed of sound in water to that in air is

- 177. Mach angle (α) is defined as the
 - (A) Quarter angle of the mach cone
 - (B) Zero angle of the mach cone
 - Half of the angle of the mach cone
 - (D). Full angle of the mach cone
- 178. A fluid in which resistance to deformation is independent of the shear stress is known as
 - (A) Pseudo plastic fluid
 - (B) Bingham plastic fluid
 - (C) Dilatant fluid

- 179. For an irrotational flow the equation $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ is known as
 - (A) Cauchy Riemann's equation
 - (B) Euler's equation
 - Laplace equation
 - (D) Poisson's equation
- 180. In Hagen Poisuelle's flow of viscous fluid, one of the following pairs of forces are balanced
 - Inertia and viscous force
- (B) Pressure and viscous force
- (C) Gravity and viscous force
- (D) Inertia and gravity force
- 181. Newton's Law of viscosity states that
 - (A) Shear stress is directly proportional to velocity
 - (B) Shear stress is directly proportional to velocity gradiant
 - Shear stress is directly proportional to shear strain
 - (D) Shear stress is directly proportional to viscosity

182.	A dra	iff tube is used with									
+1	(A)	Centrifugal fan	(B)	Axial flow pump							
	(0)	Reaction turbine	(D)	Reciprocating Compressor							
183.	Whic	h of the following pump is used for p	umping	viscous fluids?							
	(A)	Reciprocating pump	(B)	Centrifugal pump							
	(C)	Screw pump	(D)	Jet Pump							
184.	Impe	llers for high heads usually have									
	(A)	High specific speed .	(B)	Low specific speed							
	(C)	. Constant specific speed	.(D)	Speed independent of head							
105	If No	t positive suction head requirements	ama dat	natiofied than							
185.	(A)	Pump will develop only less head	(B)	Pump will not develop any head							
	(0)	Pump will develop cavitation	(D)	Pump will consume excess power							
		· ·	(1)	t dilp will consume execus power							
186.	If the	e specific speed of a turbine is in the r	ango of	200 1000 then the turbine is							
100.	(A)	Pelton	(B)	Francis							
	(A)	Kaplan .	(D)	Mixed .							
•				Mixed .							
187.	Capa	city of a hydraulic accumulator is gen	erally s	specified as							
-	(A)	Quantity of liquid accumulated									
	(B)	Maximum pressure developed									
	(0)	Maximum energy stored									
	(D)	Maximum Quantity of discharge all	owed								
	•										
188.	The f	The fin efficiency is defined as the ratio of the actual heat transfer from the fin to									
	(A)	(A) The heat transfer from the same fin with an adiabatic tip									
	(B)	The heat transfer from an equivaler	nt fin w	hich is infinitely long							
	C	The heat transfer from the same fir fin is the same as the base temperate		temperature along the entire length of the							
	(D)	The heat transfer through the base	area of	the same fin							
		4 *									

28

MPE08

- 189. Radiosity (J) for black surface is
 - Equivalent to emissive power E_h
- (B) Greater than emissive power
- (C) Less than emissive power
- (D) None of the above
- Without the use of superheater a boiler produces steam of about 190.
 - (A) 80% dryness fraction

90% dryness fraction

98% dryness fraction

- 88% dryness fraction
- The radiation heat transfer through large plates separated by N radiation shields becomes, when the emissivities of all surfaces are equal .
 - \dot{Q}_{12} , N shields = $\frac{1}{N+1}\dot{Q}_{12}$, no shield (B) \dot{Q}_{12} , N shields = $\frac{1}{N+1}$
- \dot{Q}_{12} , N shields = $(N+1)\dot{Q}_{12}$, no shield (D) \dot{Q}_{12} , N shields = $N(N+1)\dot{Q}_{12}$, no shield
- 192. Anything whether in the sender, the transmission or the receiver that bindery communication is called
 - (A) Signal

Noise

(C) Miscommunication

- Distortion
- 193. The isothermal efficiency of a reciprocessing compressor is defined as
 - Actual workdone during compression (A) Isothermal workdone during compression
 - Adiabatic workdone during compression (B) Isothermal workdone during compression
 - Isothermal workdone during compression (C) Actual workdone during compression
 - Isothermal workdone during compression Actual workdone during adiabatic compression
- The draught which a chimney produced is called 194.
 - Induced draught (A)

Natural draught

(C) Forced draught (D) Balanced draught

195.	Wate	r hammer is developed in		• • • • •						
1	(4)	Penstock	(B)	Draft tube	i					
	(C)	Turbine .	(D)	Surge Tank	٠					
196.	The f	unction of a moderator in nu	clear reactor is	-	•					
	LAY	To slow down the fast movi	ng electrons		•					
	(B)	To speed up the slow movin	g electrons							
	(C)	To start the chain reaction	_		•					
-	(D)	To transfer heat produced i	nside the reacto	r to a heat exchange	er .					
197.	In a I	Pressurised Water Reactor (P	WR)	•						
	(A)	The coolent water is pressu	rised to work as	moderator						
	(B)	The coolent water boils in the core of the reactor.								
-	10)	The coolent water is pressurised to prevent boiling of water in the core								
	(D)	No moderator is used								
	•									
198.		Bi–Metallic strips made of two different materials bend during a rise in temperatur because of								
si,	W	Differences in coefficient of	linear expansio	n ·	:					
	(B)	Differences in elastic properties								
	(C)	Differences in thermal cond			• •					
· ·	(D)	Difference in stress								
	ζ- /		1	· .						
199.	The p	orinciple of working of the co	nstant volume t	hermometer is base	d on					
	A	Boyle's law	·(B)	· Charle's law						
	(C)	Gay – Lussac's law	(D)	Equation of state						
		- w			<u>.</u> -					
200.	The i	nstrument which measures t	he temperature	of the source witho	ut direct contact is					
•	· (A)	Bi-metallic cut-out			*					
	(B)	Vapour pressure thermome	ter		_					
	10	Pyrometer			•					
	(D)	Thin film thermometer								
• .			1							
		•								