Sl. No. 30011501

711001		
#		
	Register	

			_
Register	•		
Number		•	
			_

EIE08

2014

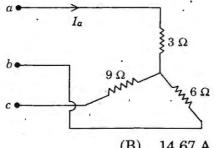
ELECTRICAL AND INSTRUMENTATION ENGINEERING (Degree Standard)

Time Allowed: 3 Hours] [Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, your Answer Sheet will not be evaluated.
- 6. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 7. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

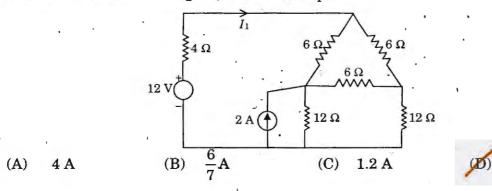


- 8. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination.

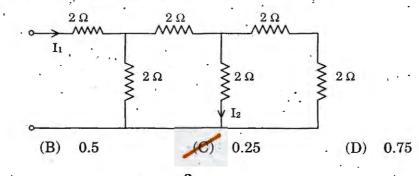
 After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 9. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 10. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 11. Do not tick-mark or mark the answers in the Question booklet.



1. For the Y connected purely resistive circuit shown in figure, if the line voltage is 220 V, three phase balanced, then the line current (I_a) will be



(A) 24.44 A 29.06 -23.42° A


- (B) 14.67 A
- (D) 18.33 A
- 2. In the given circuit, $V_1 = 40 \, \mathrm{V}$ when R is $10 \, \Omega$. When R is zero, the value of V_2 will be

3. For the circuit shown in figure, the current I_1 is

4. The current transfer ratio I_2/I_1 for the network shown in figure is

(A) 0.4

- 5. In a power transformer, conservator takes care of
 - expansion and contraction of oil
- (B) atmospheric temperature variation
- (C) atmospheric humidity variation
- (D) load fluctuation
- 6. As resistance is added in the rotor circuit of a slip ring induction motor, its maximum torque
 - (A) increases but occurs at the same slip
 - (B) decreases but occurs at the same slip
 - (C) remains the same and also occurs at lower slip
 - remains the same but occurs at higher slip
- 7. The use of Higher flux density in the transformer design
 - (A) Reduces the weight per KVA
 - (B) Increases the weight per KVA
 - (C) Has no relation with weight of transformer
 - (D) Increases the weight per KW
- 8. The expression for power developed by a salient pole synchronous generator is given by

$$(A) \qquad P_{m} = \frac{E_{b} \cdot V}{X_{d}} \cos \alpha + \frac{V^{2} \left(X_{d} - X_{q}\right)}{2X_{d} X_{q}} \cos 2\alpha \qquad (B) \qquad P_{m} = \frac{E_{b} \cdot V}{X_{d}} \sin \alpha + \frac{V^{2} \left(X_{d} - X_{q}\right)}{2X_{d} X_{q}} \sin 2\alpha$$

(C)
$$P_{m} = \frac{E_{b} \cdot V}{X_{q}} \cos \alpha + \frac{V^{2} \left(X_{d} \cdot X_{q}\right)}{2\left(X_{d} - X_{q}\right)} \cos 2\alpha \quad (D) \quad P_{m} = \frac{E_{b} \cdot V}{X_{q}} \sin \alpha + \frac{V^{2} \left(X_{d} \cdot X_{q}\right)}{2\left(X_{d} - X_{q}\right)} \sin 2\alpha$$

- 9. The power factor in a transformer
 - (A) is always unity

(B) is always leading

(C) is always lagging

- (D) depends on the power factor of load
- 10. The compensating windings in a dc machine is located
 - (A) on armature slots for compensation of armature reaction
 - (B) on commutating pole to improve commutation
 - in slots in the pole shoes to neutralize the cross magnetising effect of armature reaction
 - (B) on armature slots to prevent commutation
- 11. Which of the following motors is not self starting?
 - (A) Squirrel cage induction motor
- (B) Wound rotor induction motor

Synchronous motor

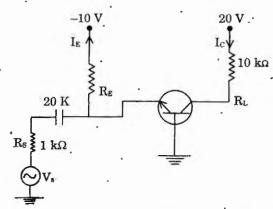
(D) DC series motor

12.	The	open loop transfer function of a	unity fee	dback control system is $G(s) = \frac{K(s+2)}{(s+1)(s-7)}$
	For			n loop and closed loop configurations of the
	(A)	stable and unstable	(B)	stable and stable
	SES	unstable and stable	(D)	unstable and unstable
			·	
13.	L^{-1}	G(s)]= $g(t)$		
٠	g(t)	is called as		i i
	(A)	step response of the system	(B)	impulse response of the system
,	(C)	ramp response of the system	(D)	parabolic response of the system
14.		response produced by simultaneous all individual responses. A system o		on of different forcing function is the sum of principle is known as
	(A)	Non linear system	(B)	Linear system
	(C)	Stabilized system	(D)	Unstable system
15.	The	major advantages of open loop cont	rol system	are ·
	(A)	maintain the required quality in	the output	
	(B)	disturbances and changes in calil	bration cau	ise error
	(e)	no stability problem		
-	(D)	output may be different from wha	at is desire	d .
16.	inpu	t by comparing them and using the	difference	
	(A)	inferential control system	(B)	
	(C)	feed forward control system	(D)	spilt-range
17.	Ring	main distribution system is prefer	red to a ra	dial system because
	(A)	It is less expensive	. (B)	Voltage drop in the feeder is less
	(C)	Power factor is higher	(10)	Supply is more reliable
	1		-1	
18	In los	ad flow analysis the load connected	d at a hue	s represented as

18. In load flow analysis, the load connected at a bus is represented as

(A) constant current drawn from the bus .

(B) constant impedance connected at the bus

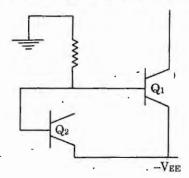

(C) voltage and frequency dependent source at the bus

(D) constant real and reactive drawn from the bus

19.	Consider the following two statements consisting of Assertion (A) and Reason (R) and select your answer using the codes given below								
	Asser	tion (A)	: Zer	o sequence cu	rrents are	e flowing from	line to line in a t	ransformer	
	Reason (R) : Transformer windings are connected in star grounded								
-	(A) is false, (R) is true								
	(B)	Both (A) a	ınd (R) are	true and (R) i	s not the	correct explan	nation of (A)	•	
	(C)	Both (A) a	ınd (R) are	true and (R) i	s the corr	rect explanation	on of (A)	,	
	(D)	(A) is true	e, (R) is fals	se		•			
,	•			*		•			
20.	Basic	quantity n	neasured ir	a distance re	lay is		ž.	•	
	(A)	Impedanc	e		(B)	Voltage diffe	rence ·		
1	(C)	Current d	ifference		(D)	Frequency di	ifference		
			,	•	•				
21.				generator is value of 22 k			due of 11 kV, 5	0 MVA. The	
	(A)	0.15 p.u	(B)	$0.2~\mathrm{p.u}$	• (C)	$0.3~\mathrm{p.u}$	(D) 2.4 p.u		
22.	The u	se of High	speed circu	iit breakers					
	(A)	_		cuit current	(B)	Improves sys	stem stability		
	(C)	Decreases	s system st	ability	(D)	Increases the	e short circuit cur	rent	
23.	The in	nsulation le	evel of 400	kV EHV over	head trai	esmission line	is decided on the	e basis of	
20.	(A)		over volta		(B)	Switching ov			
	(C)	•	ception vol	•	(D)		V interference		
				C					
24		· inverse de feature is a			ectro mag	gnetic type ov	er current relay t	the minimum	
	(A)	saturation	of the ma	gnetic circuit	(B)	proper mech	anical design		
	(C)	appropria	te time del	ay element	(D)	electromagne	etic damping		
				· ·					
25.				of a cable of le resistance wil	_	km is 1 mΩ,	for a length of 1	00 km of the	
	(A)	$1m\Omega$	(B)	$10~\mathrm{m}\Omega$	(C)	$0.1~\mathrm{m}\Omega$	(D) 0.01 m s	Ω	
				•					
26.	Light	ning Arres	ters are us	ed in power sy	stems to	protect electr	ical equipments a	ngainst	
	(A)	_	okes of ligh			P-00000 C1CCC1.			
	(B)		_	over voltages		•		•	
	(C)			indirect light	ning stro	kes .			
	(D)		_	lightning stro					

EIE08

27. For the given CB circuit. Determine the dc operating point


(A) Q (15 V, 0.5 mA)

(B) Q (12 V, 2.5 mA)

(C) Q (50 V, 0.5 mA)

(D) Q (15 V, 2.5 mA)

28. The circuit given below is a block commonly used in linear IC's. This is basically a

- constant current source
- (B) current amplifier
- (C). constant voltage source
- (D) voltage amplifier
- 29. A uniformly doped npn bipolar transistor has following parameters $N_E=10^{18}\,\mathrm{cm^{-3}}$, $N_B=5\times10^{16}\,\mathrm{cm^{-3}}$, $N_C=2\times10^{19}\,\mathrm{cm^{-3}}$, $D_E=8\,\mathrm{cm^2/s}$, $D_B=15\,\mathrm{cm^2/s}$, $D_C=14\,\mathrm{cm^2/s}$, $x_E=0.8\mu\,m$, $x_B=0.7\,\mu m$. The emitter efficiency γ is
 - (A) 0.982
- (B) 0.964
- 0.977
- (D) 0.994
- 30. Which of the following is not an advantage of Darlington pair?
 - (A) It can be readily formed from 2 adjacent transistors in an IC
 - (B) It provides very high β value
 - (C) Enormous impedance transformation capability
 - Low impedance transformation capability

31. Match the items given in Column A with the items in Column B

Column A

Column B

(a)
$$XYZ + \overline{XYZ} + \overline{X}YZ + XY\overline{Z}$$

1. X+Y

(b)
$$(X+Y+\overline{X}Y)\overline{Z}$$

2. O

(c)
$$X + \overline{Y} + \overline{X}Y$$

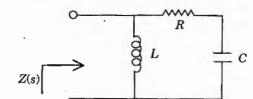
3. \overline{Z}

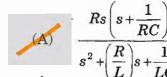
(d)
$$XZ + X\overline{Z}Y$$

4. X

b)

1

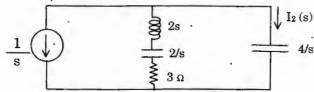

-


4

)

.

32. Determine Z(s) for the network shown in fig below



(B)
$$\frac{s + \frac{1}{RC}}{s^2 + \left(\frac{L}{R}\right)s + \frac{1}{LC}}$$

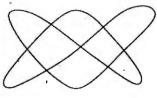
(C)
$$\frac{Rs\left(s + \frac{R}{C}\right)}{s^2 + \left(\frac{R}{L}\right)s + \frac{1}{LC}}$$

(D)
$$\frac{s + \frac{R}{C}}{s^2 + \left(\frac{R}{L}\right)s + \frac{1}{LC}}$$

33. Find $I_2(s)$ by current division method. Assume all initial conditions to zero

(A)
$$s\left[\frac{2s^2 + 3s + 2}{2s^2 + 3s + 6}\right]$$

(B)
$$s \sqrt{\frac{2s^2 + 3s + 6}{2s^2 + 3s + 2}}$$


$$-\frac{1}{s} \left[\frac{2s^2 + 3s + 2}{2s^2 + 3s + 6} \right]$$

(D)
$$\frac{1}{s} \left[\frac{2s^2 + 3s + 2}{2s^2 + 3s + 6} \right]$$

34.		poles and zeros of a driving point fur tive real axis with a pole closest to th		f a network are simple and interlace on the
	(A)	by an LC network		as an RC driving-point impedance
	(C)	as an RC driving-point admittance		
		· ·		
35.		ery high frequencies the driving poin	t imped	ance function, $Z(s) = \frac{(s+1)(s+3)}{s(s+2)(s+4)}$
	(A)	a resistance of $\frac{3}{2}\Omega$	(B)	a capacitor of 4 F
	ser .	a capacitor of $\frac{1}{4}$ F	(D)	an inductance of 4 H
•	•	. (2 00)		
36.	The t	transfer function $\frac{4(s^2+25)}{s^2+2.5s+100}$ is of		
	(A)	Low pass notch filter	(B)	Low Q band pass filter
	(C)	High Q band pass filter	(D)	High pass notch filter
37.	Λ	sit aton aument of 1 A is applied	to 0 7	etwork whose driving point impedance is
01.	4	/		nitial values of the voltage developed across
			o uniu ii	and values of the volvage developed deloss
		ource are		
	(A)	$\left(\frac{3}{4}V, 1V\right)$ (B) $\left(\frac{1}{4}V, \frac{3}{4}V\right)$	100	$\left(\frac{3}{4}V,0V\right)$ (D) $\left(1V,\frac{3}{4}V\right)$
38.	In PN	MMC type instrument, voltmeter load	ing can	be greatly reduced by using a
	(A)	BJT collector follower		BJT emitter follower
	(C)	FET emitter follower	The second second	SCR resistor follower
39.		PMMC type ammeter, if the full-sca mined as	de mete	er current is known, the sensitivity can be
	(A)	square of full-scale current	(B)	reciprocal of full-scale current
•	(C)	square root of full-scale current	(D)	cube root of full-scale current
40.	Instr	ument used for measurement of ou	antity o	of electricity (charge) passed through it is
	know	n as		
	(A)	Meggar	(B)	D'Arsonval Galvanometer
	(0)	Ballistic Galvanometer	· (D)	Ohm meter
41.		rtical spindle is generally preferred the point of view of	to a ho	rizontal one in Ammeters and Voltmeters,
	(A)	large friction torque	(B)	no friction torque
	(C)	small friction torque	(D)	allowable friction torque
F			9	EIE08

[Turn over

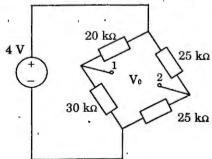
42. A closed lissajous pattern is shown in figure. Find the ratio of frequencies of vertical and horizontal signals

- (A) $\frac{2}{3}$
- 98) . 3

- (C) $\frac{1}{3}$
- (D) $\frac{3}{1}$

- 43. The following is not used in Active display
 - (A) CRT

(B) Gas discharge plasma


(C) LEDs

- LCDs
- 44. The following is not in X-Y recorder
 - (A) input variable is plotted as a function of the other
 - (B) zero adjustments are available
 - paper is keep rotating
 - (D) paper is held stationary
- 45. Analog recorders may be broadly classified into three categories, namely
 - (A) graphic recorders, oscillographic recorders and magnetic tape recorders
 - (B) strip chart recorders, circular chart recorders and X-Y recorders
 - (C) potentiometer type recorders, bridge type recorders and LVDT recorders
 - . (D) galvanometer recorders, CRT recorders and tape recorders
- 46. The time base of CRO is developed by
 - (A) square waveform

B) saw tooth waveform

(C) sine waveform

- (D) output from a built I clock
- 47. The output resistance across the terminal 1 and 2 of the DC bridge is

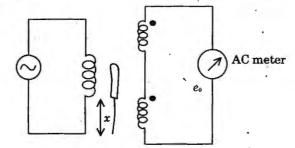
- (A) 12.5 kΩ
- **(B)** 24.5 kΩ
- (C) $25.0 \text{ k}\Omega$
- (D) $100 \text{ k}\Omega$

- In an instrument the smallest measurable input is known as
 - (A) Threshold
- (B) Resolution
- (C) Dead zone
- (D) Precision
- A set of independent current measurements were taken by six observation

12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A and 12.4 A. Find variance

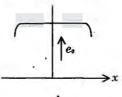
- $0.15 A^2$
- (B) 0.115 A²
- . (C) 1.15 A²
- . (D) 0.05 A²
- Determine the magnitude and % of limiting error in ohm for the following resistance value.

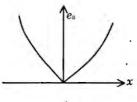
$$R_1 = 37 \Omega \pm 5\%$$

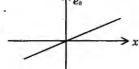

$$R_2 = 75 \Omega \pm 5\%$$

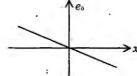
$$R_3 = 50 \Omega \pm 5\%$$

(A)
$$160 \pm 5\%$$


(C)
$$160 \pm 3\%$$


- The reference power for determining the sound power level is
 - 0.00002 W
- (B) 10-12 W
- (C) 1 W
- (D) 100 W
- The output of an LVDT is connected to a 5 V voltmeter through an amplifier. An output of 2 mV appears across the terminals of the LVDT when the core is displaced through a distance of 0.5 mm. Sensitivity of the LVDT is
 - (A) 5 V/cm
- 4 mV/mm
- (C) 1 mV/mm
- (D) 2 mV/mm
- 53. The two secondary coils of an LVDT have wrongly been connected as shown in fig:


Then the input-output relationship would be



(C)

(D)

11

- 54. LVDT, used for displacement measurement is
 - an externally power operated transducer (A)
 - (B) a self generating passive transducer
 - (C) a capacitive transducer
 - (D) a digital transducer

- 55. Which is the disadvantage of LVDT?
 - Linearity is good upto 5 mm
- (B) Low power device

(C) . Low hysteresis device

- AC input generates noise
- 56. The output of an LVDT is connected to a 5 V voltmeter through an amplifier of amplification factor 250. The voltmeter scale has 100 divisions and the scale can be read to 1/5th of a division. An output of 2 mV appears across the terminals of the LVDT when the core is displaced through a distance of 0.5 mm. Calculate the sensitivity of the LVDT
 - (A) 1 V/mm
- 4 mV/mm
- (C) 2 mV/mm
- (D) 8 mV/mm
- 57. A seismic type displacement transducer is used for frequency that are
 - lower than the undamped natural frequency of the instrument (A)
 - higher than the undamped natural frequency of the instrument
 - equal to the undamped natural frequency of the instrument \cdot (C)
 - (D) at all frequency
- 58. Helical spiral springs are used in spring balances for measurement of force. The axial displacement y expressed in terms of Force F is given by
 - $y = \frac{4 F n R^3}{G r^4}$ (B) $y = \frac{2 F n R^3}{G r^4}$ (C) $y = \frac{G r^4}{4 F n R^3}$ (D) $y = \frac{G r^4}{2 F n R^3}$

- 59. The strain gauge torque meter has many advantages, but the disadvantage is that
 - (A) it is fully temperature compensated
 - provide automatic compensation for bending and axial loads
 - (C) gives maximum sensitivity for a given torque
 - ease of connection to power source
- In a driving type dynamometer, if V is the voltage, I is the current generated in the sink, η is the efficiency of the sink motor, the power supplied to the sink is
 - (A) $P = \frac{VI}{n}$ (C) $P = \frac{V\eta}{I}$ (D) $P = \frac{\eta}{VI}$

- The seismic mass of a spring-mass accelerometer is 50 g and the spring constant is 5000 N/m. The amplitude of relative displacement is ± 2 cm. The maximum measurable acceleration in g is
 - (A)
- (B) 204 g
- (C) 408 g
- (D) 816 g

62.				nt, heat energy	trans	ferred to the l	hot jun	ection is c	converted to
	(A)	rical energy by Peltier effect		Seebeck effect	(C)	Hall effect	(D)	Faraday	effect
63.	The (A)	thermocouple t Iron – Const Platinum – I	antan	measure a temp	(B)	re in the range of Copper – Cons Chromel – Alu	stantar		O° C is
64.		taken by the t equal to the equal to twice	hermoco time con e the va times tl	y immersed in ouple to reach 98 stant of the the lue of the time of he value of the t me constant	3% of the rmocou constan	he steady state iple it of the thermo	value i couple	S	approximate
65.		e spectrum decreases increases	ndepend	the increase in	•	omic number of	the tar	get elemen	nt, intensity
66.	The 1 (A) (C)	reference electro Glass electro Antimony ele	de	H measuremen	t is (B) (D)	Hydrogen elec Hg-calomel ele			·
67.	electi	rodes repectiv	ely. The	reference and measured emi is -0.246 V, the 6.84	f was	650 mV. If the	e oxida	tion poter	
68.	The I	pH value of pur 0	re water	is . 7	(C)	10	(D)	14	
69.	pH v. (A) (B) (C) (D)		rithm of arithm o as concei	the hydrogen io f the hydrogen i atration					•
70.	Tung (A)	3.5 nm to 2.5 350 nm to 2.5	μ m	velength range	is (B) (D)	35 nm to 25 μ 3500 nm to 25			
71.		o multiplier tu	bê has a			nal gain.			
_	· (A)	low	(B)	high	(C)	medium	(D)	infinite	FIFOS
1				•	19	•			H: 1 H: 6152

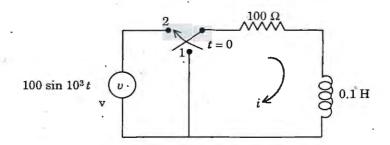
[Turn over

	TALLUZE	i raide bilesi om can se compaced as			
	(A)	$\lim_{t\to\infty} y(t) = \lim_{z\to\infty} [y(z)]$	(B)	$\lim_{t\to 0} [y(t)] = \lim_{z\to \infty} [y(z)]$	
	(C)	$\lim_{t\to\infty}[y(t)]=\lim_{z\to0}[y(z)]$	(D),	$\lim_{t\to 0}[y(t)] = \lim_{z\to 0}[y(z)]$	
73.	Ina	process control system, to suppress sm	all err	ors in a process ———————————————————————————————————	
	(A)	ISE (B) IAE	(C)	ITAE (D) 1/4 decay ratio	
74.		process having more variable than eq			
	(A)	The state of the s		under specified process	
	(C)	exactly specified process	(D)	is not a specified process	
75.	. In u	Itrasound Doppler effect the relation is $\frac{2f_0 u \cos \theta}{C}$.	n betw	veen change in ————— and bl	ood
	(A)	time and blood velocity	(B)	frequency and blood velocity	
	(C)	frequency and blood pressure	(D)	time and blood pressure	
76.	In FI	$\overline{\mathrm{ECG}}$ magnitude of R wave is	•		
	(A)	100 micro volts to 300 micro volts	(B)	200 micro volts to 330 micro volts	
	(C)	150 micro volts to 250 micro volts	(D)	120 micro volts to 200 micro volts	
77.	The c	duration for Q wave in ECG is			
	(A)	0.30 to 0.35 Sec (B) 0.35 to 0.44 Sec	(C)	0.44 to 0.48 Sec (D) 0.48 to 0.56 Sec	
• 78.		design foreign molecules we	orm ar	d damaged organells	
	(A) ·	Peroxisomes		Lysosomes	•
	(C)	Centrosomes	(D)	Ribosomes	
	: -				
79.				y of the measurements. It is used in	the
		surements to describe the consistency of			
	(A)	Sensitivity (B) Stability	(C)	Accuracy Precision	
80.	For i	nternal stimulation using pacemaker,	the cu	rent applied in the range of	
	(A)	2 to 15 mA (B) 20 to 50 mA	· (C)	25 to 60 mA (D) 30 to 75 mA	•
81.	Whic	h one of the following pacemaker has s	imple	mechanism and the longest battery life?	
	(A)		1000	Ventricular asynchronous pacemaker	
	(C)	Ventricular inhibited pacemaker	(D)	Atrial synchronous pacemaker	
EIF			14		
	-				

	82.	In frequency division multi- used with a bandwidth of —	plexing telemetr	уас	carrier freq	uency of -	can be
		230 MHz ± 320 KHz	z	(B)	220 MHz	± 300 KH	
		(C) 200 MHz ± 300 KH		(D)	320 MHz	± 220 KH	
				/			
	83.	In frequency division mult			ne modulate	ed subcarr	ier signal consists of
			and transmission	100	/		The second
		(A) 28 to 30 KHz (B)	30 to 32 KHz	(0)	32 to 36 K	Hz (D)	36 to 38 KHZ
	84.	In case of radio frequency te	lemetry, the char	nnel i	s	— phys	sical link.
-		(A) one of (B)		(C)		(D)	specified as
	85.	The Modulation Index (mf) "m" in amplitude modulation		dulat	ion is —		the modulation index
		(A) is not equal to		(B)	analogous		
		(C) square of		(D)	twice of		
		(0)					
	86.	The address bus of 8085 n accessed by this address bus		16 k	oit wide. H	ence the n	nemory which can be
		(A) 112 KB (B)		(C)	16 KB	. (D)	64 KB
		1					
	97	How many flag bits are avai	lable in 8085?				•
	01.	(A) 3 (B)	4	100	5	(D)	6
		(A) 0 (D)	•	,		. (2)	
	88.	The port that is used for memory in a 8051/31 micros		ess a	nd data pi	ns for conr	ecting to an external
		(A) Port 0 (B)		(C)	Port 2	(D)	Port 3
		10100					
	00	The register select bits to id	ontific register ha	nle a	in 8051 mic	rocontrolle	rie
	89.	(A) $RS1 - 0$, $RS0 - 0$		(B)	RS1 – 0, R		1 15
		RS1 – 1, RS0 – 0		(D)	RS1 = 1, R		
	-	họi – 1, 1130 – 0	•	(1)	1, 1,	.50 1	• -
	90.	After the execution of the f	ollowing 8051 mi	icro c	ontroller co	de, the cor	ntent of Stack Pointer
		(SP) is					
		MoV 81 H, # 30 H					
		MoV Ro, # 0 ACH					
		PUSH 00 H		•			
		PUSH 00 H					
		(A) 00 H (B)	30 H	(C)	31 H	(15)	32 H
	<u>+</u>		1	5		1	EIE08
							[Turn over

91.		out B comes on o goes off is kno		specific time a	ıfter out	put A is turn	ed on, when A is t	urned off,
	(A)	Off delay time	er		(B)	On delay tim	ier	
	(C)	Limited on de	lay tim	ıer	(D)	Limited off d	lelay timer	
92.	Com	munication in D	ÇS sh	ould have —	and the	delay.	•	
,	(A)	minimum	(B)	maximum	500	no	(D) moderate	
93.	Long	-term data stor	age and	d retrieval is be	eing peri	formed in the		
	(A)	LLHID	(B)	LCU	(C)	HLCU	HLHID	
94.		any DCS dedica ete event is kno		vices called se	quence o	of events reco	der monitor the occ	arrence of
	(A)	Process alarm	ıs		(B)	Trip lags		
	(C)	Equipment al	arm	•	(D)	Operator con	trol action	
95.		prov	ide a b	ackground for	the dyna	· umic portion o	f the graphic display	
	(A)	Data field			B	Static field	91	
	(C)	Dynamic field		-	(D)	Transient fie	ld	•
96.				<u> </u>	$\begin{array}{c c} I & N \\ \hline \end{array}$			
				·	P 0	·		
	The c	configuration is	known	as	-		• •	
	(A)	NO SPST	(B)	NC SPST	(C)	NO	SPDT	
97.							d on conventional pa ntation is known as	nel board
	(A)	Area graphic	lisplay		(B)	Alarm summ	ary display	
	(C)	Batch control	display		(D)	Operator gui	de .	
98.		erarchy display e process unit w				control loops	and data points rela	iting to a
	(A)	Plant level	(B)	Group level	(C)	Area level	(D) Loop level	
EIE	08				16	•		E

99. If an RLC resonant circuit has a resonance frequency of 1.5 MHz and a bandwidth of 10 KHz. If C = 150 pF, then effective resistance of the circuit will be

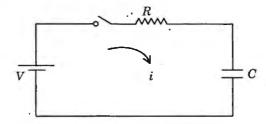


 4.7Ω

(B) 29.5 Ω

(C) 9.5 Ω

- (D) 14.75 Ω
- 100. In the circuit shown in figure $i(0_+) = i(0_-) = 0.5 A$. The current i for t > 0 will be



$$\frac{1}{\sqrt{2}}\sin\left(10^3t - 45^\circ\right) + e^{-1000t}A$$

(B) $\frac{1}{2} \left[-45^{\circ} A \right]$

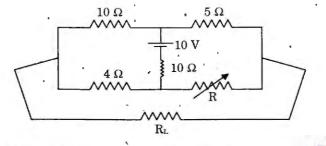
(C) $0.5 \sin (100 t - 60^{\circ})$

- (D) $0.866 \sin (1000 t 90^{\circ})$
- 101. The transient response of the initially relaxed network shown in the figure is

(A) $i = \frac{V}{R} e^{\frac{t}{R}C}$

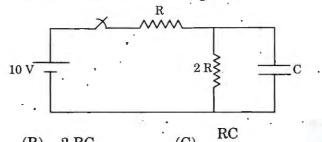
(B) $i = \frac{V}{R} \left(1 - e^{-\frac{t}{R}C} \right)$

(C) $i = \frac{V}{R} \left(1 + e^{-t/RC} \right)$


- $i = \frac{V}{R}e^{-\frac{t}{R}R}$
- 102. A three phase star connected load is balanced and has $a(20+j20)\Omega$ impedance per phase. The load is connected to a 440 V, 3 phase source. The total power input to the load measured by two wattmeter method is 4830 W. If the impedances are connected in delta, the total power input will be

17

- (A)
- 4830 W
- ces
- 14490 W


- (B) 9660 W
- D) 11430 W

103. In the network shown in the figure, for the current to be zero in R_L, the value of R should be adjusted to

- (A) 1 Ω
- (B) 5 Ω
- (C) 10 Ω
- $D) 2\Omega$

104. The time constant of the network shown in the figure is

- (A) 3 RC
- (B) · 2 RC
- (C) $-\frac{RC}{2}$
- $\frac{2}{3}$ RO

105. The pulse frequency resolution of a stepper motor is given by the expression

- (A) $n = f \beta N_s \cdot N_r$, frequency in pps
- $n = \beta \times \frac{f}{360}$ frequency in pps
- (C) $n = \beta \times \frac{f}{180}$ frequency in pps.
- (D) $n = \frac{f\beta}{N \cdot N}$ frequency in pps

106. Match the following:

Column I (DC motor)

- Column II (Applications)
- (a) Differential compound motor
- 1. Coal cutting machines
- (b) Cumulative compound motor
- 2. Hoists and cranes

(c) Series motor

3. Looms in textile mills

(d) Shunt motor

- 4. Research and experimental work
- (a) (b) (c) (d) 3 (A) 2 1 3 (C) 2 1 4 (D) . 1 3

- 107. For successful parallel operation of 2 single phase transformers. The most essential condition is that their
 - percentage impedances are equal (A)
- (B) polarities are properly connected
- (C) turns ratio are exactly equal
- KVA ratings are equal

108. Match the following

Column I

Column II

Torque (a)

- Current 1.
- Moment of inertia (b)
- 2. Charge
- Angular velocity (c)
- 3. Voltage
- (d) Angular displacement
- 4. Inductance

- (a)
- (b)
- (c) (d)

- (A)

- 109. The transfer functions of two compensators are $C_1 = \frac{10(s+1)}{(s+10)}, C_2 = \frac{(s+10)}{10(s+1)}$
 - Which one of the following statements is correct?
 - C_1 is a lead compensator and C_2 is a lag compensator
 - C_1 is a lag compensator and C_2 is a lead compensator (B)
 - (C) Both C_1 and C_2 are lead compensators
 - (D) Both C_1 and C_2 are lag compensators
- 110. For the transfer function $G(s)H(s) = \frac{1}{s(s+1)(s+0.5)}$. The phase cross-over frequency is
 - (A) 0.5 rad/sec

(B) 0.707 rad/sec

(C) 1.732 rad/sec

- (D) 2 rad/sec
- 111. What will be the closed loop transfer function of a unity feedback control system whose step response is given by $C(t) = K \left[1 - 1.66 e^{-8t} \sin \left(6t + 37^{\circ} \right) \right]$?

$$\frac{100 K}{s^2 + 16 s + 100}$$

(B)
$$\frac{10}{s^2 + 16s + 100}$$

(C)
$$\frac{K}{s^2 + 16s + 100}$$

(D)
$$\frac{10K}{s^2 + 8s + 10}$$

- 112. For a second order system $2\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 8x$. The damping ratio is
 - (A) 0.1
- (B) 0.25
- (C) 0.333

	•			
113.	betwe	ee phase over head transmission line heen adjacent conductors equal to 'd', if a equilateral Triangle of sides equal to Average capacitance and inductance Average capacitance decreases and in Average capacitance increases and in Surge impedance loading of the line in	now to do now the will in ductar ductar	crease nce increases nce decreases
114.		der the following two statements cons answer using the codes given below.	sisting	of Assertion (A) and Reason (R) and select
	Asser	tion (A) : In transmission lines,	cond	actors are transposed
-	Reaso (A)	* 1		Both (A) and (R) are false (A) is false and (R) is true
115.	Peltor	n turbines are suitable for		
110.	(A) ·	Low heads	(B)	Medium heads
-	(e)	High heads	(D)	Low and medium heads
116.	Storag (A) (C)	ge requirement for hydro electric plant flow duration curve stream flow	100	be determined from hydrograph load demand
117.	A syn. (A) (B) (C) (D)	chro is used to accelerate a rotating shaft convert an angular position of a shaft convert linear motion into angular po amplify low frequency signals		an electrical signal
118.	For n. (A) (B) (C) (D)	gain of the system should be increase gain of the system should be decrease the number of zeros to the loop transf	ed fer fun	
	(D)	the number of poles to the loop transf	er Iun	cuon snouid be increased
119.	In a 7	0/6 A.C.S.R conductor there are		
	(A)	35 aluminium conductors and 3 steel		
	(B) (C)	70 aluminium conductors and 6 steel 70 steel conductors and 6 aluminium		
	(D)	35 steel conductors and 3 aluminium		
120.	For lo	w head and high discharge the hydrau	ılic tuı	bine used is
		Francis turbing (B) Kaplan turbing		

- 121. The capacitor switching is easily done with
 - Air blast circuit breaker
- (B) Oil circuit breaker

- Vacuum circuit breaker
- (D) SF₆ circuit breaker
- 122. For a fault at the terminals of a Synchronous Generator, the fault current is maximum for a
 - 3-phase fault

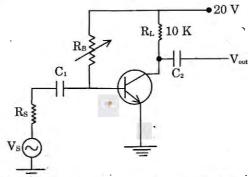
(B) phase to phase fault

- line to ground fault

- (D) line to line fault
- 123. CMRR of an ideal operational amplifier is
 - (A) Unity
- (B) Infinity
- (C) Zero
- 106 (D)

- 124. A photodiode works based on
 - Forward current (A)

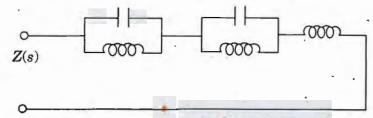
Reverse current


(C)Forward voltage

- Reverse voltage
- 125. In a p-type silicon sample, the hole concentration is 2.25×10^{15} /cm³. If intrinsic carrier concentration is $1.5 \times 10^{10} / \text{cm}^3$. Then electron concentration is
 - (A)
- (B) $10^{10}/\text{cm}^3$
- $10^{5}/\text{cm}^{3}$
- (D) $1.5 \times 10^{25} \,\mathrm{cm}^3$
- 126. In a 4 bit weighted resistor D/A converter. The resistor value corresponding to LSB is 32 K ohm. The resistor value corresponding to MSB will be
 - (A) 32 K ohm
- (B) 16 K ohm

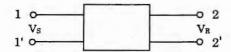
- 127. An active filter consisting of an op-amp resistors $R_1 R_2 R_3$ and two capacitors of value C each

 $\frac{-s/R_1C}{s^2 + \left(\frac{2s}{R_3C}\right) + \frac{1}{\left(RR_3C^2\right)}}. \quad \text{Where} \quad R_1 \cap R_2 = R \quad R_1 = 2K\Omega,$ has a transfer function T(s) = -

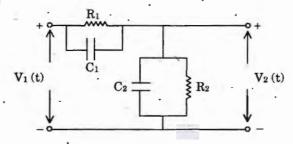

- $R_2 = 2/3 \, K\Omega$, $R_3 = 200 \, K\Omega$, $C = 0.1 \, \mu \, F$. Find central frequency w_0
- (A) 1008 rad/sec
- 1108 rad/sec
- 1118 rad/sec
- (D) 1018 rad/sec
- 128. Determine the value of R_B required to adjust the circuit to optimum operating point. Take $\beta = 50$ and $V_{BE} = 0.7 \text{ V}$

- (A) $665 K \Omega$
- (B) $765 K \Omega$.
- $865 K \Omega$ (C)
- $965 K \Omega$

129. 54/74	164 is an 8 bit										
(A)	serial input p	arallel o	output shift reg	gister							
(B)	(B) serial input serial output shift register										
(C)	parallel input	parallel input serial output shift register									
(D)	parallel input	t paralle	el output shift r	egister							
•			-		•		·				
130. The o	uitnut of		- gato aro com:	alamant	of an OR gate.						
(A)	AND	(B)	NOR		. NAND	· (D)	NOT				
	AND	(15)	Non	(0)	, NAND	(D)	NOI				
		•				•					
131. In —	ga	ite an oi		ien any	(or) all input a	re pres	ent.				
(A)	AND	(B)	OR	(C)	NOR	(D)	NAND				
132. A div	ide by 78 coun	ter can l	oe realised by u	sing			•				
(A)	6 numbers of	mod-13	3 counters								
(B)	13 numbers o	of mod-6	counters	- X	•	•					
(C)	one mod-13 c	counter	followed by one	mod-6	counter						
(D)	13 numbers o	f mod-1	3 counters								
						-					
122 Mhoh	inami niimhan	أمينيما	ant of docimal r		90 :-	-					
(A)	11111	equivan (B)	ent of decimal 1 10011	(C)	11011	(IN)	11110				
(A)	11111	(D)	10011	(0)	11011	(0)	11110				
	the quotient of	10011					•				
(A)	111	(B)	11	(C)	10	(D)	101				
	•		160								
135. The d	lecimal equival	ent of B	CD number is				•				
0110	10001 0011	0010									
(A) .	6933	(B)	6932	(C)	693.2	(D)	69.32				
100 144	la aimeal mana-la	- 10	loi. BOD	TVI-	14 %	•					
			9 in BCD syst	em. The		(D)	111100100				
(A)	10011100	(B)	11011011		00011011	(D)	111100100				
137. The la	argest decimal	number	can be stored	in a six	flip flop counte	er (mod	-64) is				
(A)	63	(B)	64	(C) ·	65	(D)	62				
	•										


138. The driving point impedance of the network shown in figure has

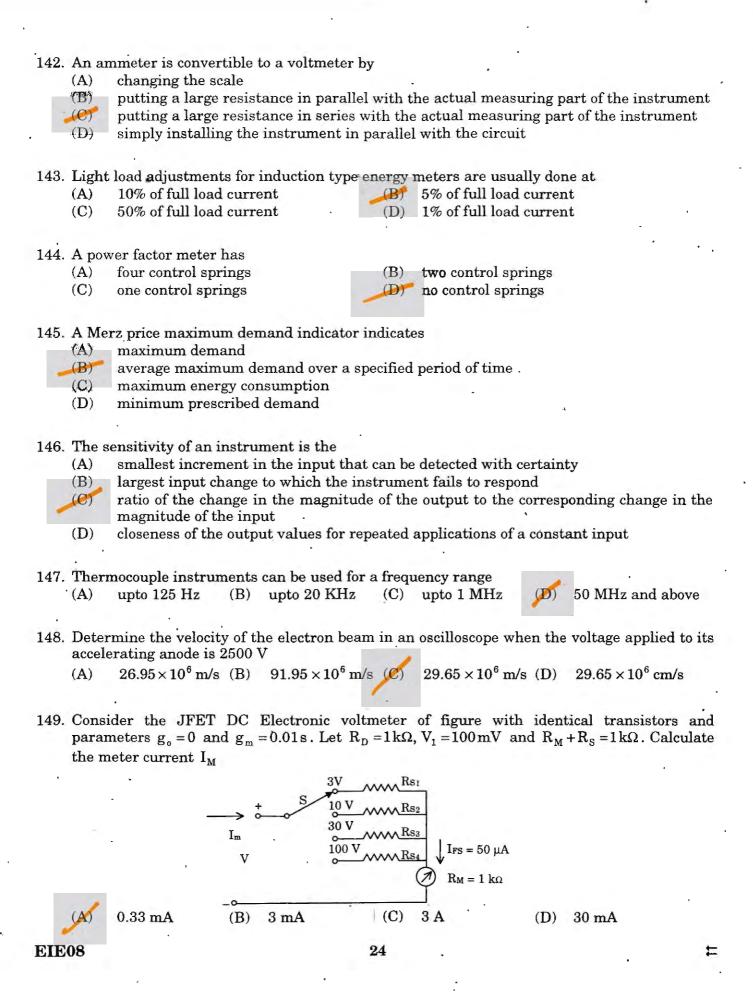
(A) zeros at 0 and infinity


- poles at 0 and infinity
- (C) pole at 0 and zero at infinity
- D) zero at 0 and pole at infinity

139. The voltage transfer ratio of two-port networks connected in cascade may be conveniently obtained from the

- product of the individual ABCD matrices of the two networks
- (B) product of voltage transfer ratios of the two individual networks
- (C) sum of the Z-matrices of the two networks
- (D) sum of the h-matrices of the two networks

140. For the compensated attenuator of figure below the impulse response under the condition $R_1 C_1 = R_2 C_2$ is


- (A) $R_2/(R_1+R_2)\left[1-e^{-t/R_1C_1}\right]u(t)$
- $[R_2/R_1+R_2]\,\delta(t)$

(C) $[R_2/R_1 + R_2]u(t)$

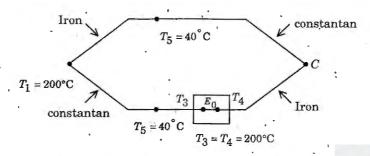
(D) $[R_2/R_1 + R_2] \left[1 - e^{-\frac{t}{R_1}c_1} \right] u(t)$

141. A two port network is defined by the relations $I_1 = 2V_1 + V_2$ and $I_2 = 2V_1 + 3V_2$. Then Z_{12} is

- (A) -2Ω
- (B) -1Ω
- (C) $-1/2 \Omega$
- $D = -1/4\Omega$

150.	1.00		ten divisions on t				
			line base setting of	5 m sec/ div	, the number of	of cycles of sign	iai displayed on
		creen will be			- 1		
•	(A)	0.5 cycles	2.5 cycle	es . (C)	5 cycles	(D) 10 cy	cles .
151.	The	deflection sen	sitivity of a Cathod	le rav tube i	s		
	(A)		portional to the det				
	(B)		portional to the squ			ge	
	(C)		coportional to the d			<i>-</i>	
	(D)		t of the deflection v				
			•	8	٠.	•	
150	A			1			
152.			nicrometer is terme	ed as	C		
	(A)	Accidental		(D)	Systematic e		
•	(C)	Interference	e error	(D)	Random erro	or ·	
153.			em of a MC am			g and a spri	ng stiffness of
			e natural frequency	2.14			
	(A)	314 rad/s	(B) 628 rad/	s	632.4 rad/s	(D) 9.42 i	rad/s .
	_		1				a trouisi di serse
154.		_	uit the current in		· ·		the other, I_2 is
			mine the total cur				± 9\ A
	(A)	$(300 \pm 2) A$	(D) (300 ± 5) A .	$(300 \pm 7) \text{ A}$	(D) (300	± 3) A
155.			tem has a time of				asient pulse of
	dura		atput will closely co				
1	(A)	$T >> \tau$	(B) $T \geq \tau$. (C)	$T < \tau$	C (D) $T \ll$	τ .
			•				
156.	The r	eliability of a	n instrument refer	s to			•
	(A).	measureme	nt changes owing t	o temperatu	re variation		
	(B)	the degree t	o which repeatabil	ity continue	s to remain wit	thin the specific	ed limits
	(C)	the life of th	ne instrument				
	(D).		o which the charac	teristics ren	nain linear		
157	A ros	ding is recor	ded as 68.0Ω . The	roading has			
101.	(A)		icant figures	reading nas (B)		nt figure	1
	(C)	two signific		(D)			
	(0)	two sigmic	ant ligures	(D)	iour significa	int figures	
						•	
158.			ted by a person in			•	
	(A)	Gross error		(B)	Random erro		
	(C)	Instrument	al errors	(D)	Environmen	tal errors	

EIE08 [Turn over


159.	59. A Linear Variable Differential Transformer (LVDT) is								
	(A)	a displacement transducer	(B)	an impedance matching transformer					
	(C)	a differential temperature sensor	(D)	an auto transformer					
160.	Linea	r variable differential transformer has							
	(A)	two primary coils connected in phase and a secondary coil							
	(B)	two primary coils connected in opposition and a secondary coil							
	(C)	one primary coil and two secondary coils connected in phase							
-	(D)	one primary coil and two secondary co	oils cor	nnected in opposition					
161.	In sn functi		le Ap	plication Processor (NCAP) performs the					
	(A)	Data transfer and communication	(B)	Detection and control of TIMs					
	(C)	Command Processing	(D)	Analogue signal conditioning					
162.	Which	n of the following device is used for larg	ge pow	er rating for transducting displacement?					
	(A)	Single slide wire potentiometer	(B)	Cermet					
	(C)	Wire wound potentiometer	(D)	LVDT					
163.	In sm	art sensor, TEDS module stands for							
	(A)	Transducer Electrical Digital Sensor	(B)	Transducer Electronic Data Sheet					
	(C)	Transmitter Electrode Digital Score	(D)	Transmitter Electrical Drift Sensor					
164.	A var	iable reluctance type of transducer con	sisting	g of a coil which is wound on a					
	(A)	Aluminium core	(B)	Copper core					
_	(e)	Ferromagnetic core	(D)	Silver core					
				•					
165.		provide dimensional standa		-					
	(A)	Vernier calliper	(B)	Micrometer screw					
	(C)	Dial Gauge		Gauge blocks					
166.	Backl	ash error of screw gauge is minimized	by						
	(A)	decreasing the size of screw	(B)	increasing the size of screw					
•	(0)	greasing the screw	(D)	pressuring the screw					
167.	The p	rincipal disadvantage of Piezo electric	transc	lucer is that					
	(A)	it needs external power	BY	it cannot measure static pressure					
	(C)	life time is less	(D)	needs an airconditioned environment					

26 ·

EIE08

#

168. The extension wires of an iron-constantan thermocouple were improperly wired shown in Fig. The voltmeter calibrated in °C will then read

- 240° C (A)
- (B) 180° C
- 140° C
- 120° C

169. An acceleration in Piezo-electric accelerometer in the - direction would increase the on the crystal in proportion to the acceleration.

(A) upward, velocity (B) downward, velocity

upward, force .

downward, force (D)

170. The leads from the strain gauge's accelerometer are taken to a wheatstone bridge whose output indicates the

- (A) acceleration between the mass and housing form
- 'relative acceleration between the mass and housing form
- (C) displacement between the mass and housing form
- relative displacement between the mass and the housing form

171. A nozzle flowmeter has a pressure drop of 200 mm of water for a flow rate of 100 L/min. For a pressure drop of 400 mm of water, the flow rate is

- 141 L/min
- (B) 165 L/min
- (C) 200 L/min
- (D) 362 L/min

172. Which of the following accessory is commonly used in the installation of a pressure measuring device under pulsating condition?

(A) Diaphragm seal

Siphon (B)

Snubber

(D) 3-valve manifold

173. A thermocouple with its reference junction exposed to room temperature of 20° C gives an open circuit voltage of 5 mV. If the thermocouple has temperature sensitivity of 50 µV/°C, the measured temperature is

- 100° C (A)
- B) 120° C
- 20° C (D)

174. The wavelength at which the target body is radiating at its peak energy is 2.28 µm. The expected temperature of the body is

- (A) 273° C
- (B) 1273° C
- - (Ø) 1000° C
- (D) 1500° C

175.	_	ue and saturat	ion in l	Photo Multiplie	er Tube	(PMT) occur at		illun	nination
3	level.	high	(B)	low	(C)	medium	(D)	decreased	
176.	The g	rating has 1000 lines/mr	n (B)	1100 lines/mr	n 96)	1200 lines/mm	(D)	1300 lines/m	m
177.	The N	fichrome strip 600 – 700° C	_			800 – 900° C	(D)	900 – 1000° (C
178.	Trans	fer function of	transp	ortation lag is			٠.		
	(A)	e^{T_s}	(18)	e^{-Ts}	(C)	$\frac{1}{T_{s+1}}$	(D)	$\frac{1}{T_s}$	
179.	A dea (A) (B) (C) (D)	Finite settling Finite settling Maximum set	g time, i g time, i tling ti	maximum rise minimum rise me, minimum 1	time an time and rise time	equires the close d zero-steady sta d zero-steady sta e and finite-stead l finite-steady sta	ate eri te err ly sta	or or te error	nave
180.	180. Which one of the following is not the feature of Dahlin's algorithm? (A) Same as that of internal model control for first-order plus dead time processes (B) Robustness of the loop in the presence of modeling errors (C) Improves dynamic response with sensitive to modeling errors Suitable for processes with inverse response								
181.	Z-tran	nsformation of	$\left[e^{-at} ight]$ is	equivalent to				·	
1	115	$\sum_{n=0}^{\infty} e^{-anT} 3^{-n}$	(B)	$\sum_{n=0}^{\infty} e^{anT} 3^{-n}$	(C)	$\sum_{n=0}^{\infty} e^{-anT} 3^n$	(D)	$\sum_{n=0}^{\infty} e^{anT} 3^n$	
182.	(A) (C)	On/Off Integral	rol anti	cipates future	errors a	nd introduce approportional Derivative	propri	ate action.	,
183.		multicapacity oller makes it e On/Off			ıse is ve	ry sluggish, the	additi	ion of a ——— PIn	
184.					ap is —	th			will be
	()	 ,						•	
	(C)	small, decreas			(B) (D)	small, increased large, increased			
19119	08			-	28	•			

185.	. In the	e following pacemakers which one is the de	nand pacemaker?						
	(A)	Atrial synchronous pacemaker :	Ventricular inhibited pacemaker						
	(C)	Ventricular synchronous pacemaker (D)	Ventricular asynchronous pacemaker						
186	. In the following pacemakers which one is the programmable pacemaker?								
	(A)	Ventricular inhibited pacemaker	grammasic paternation.						
	(B)	Atrial synchronous pacemaker							
	(0)	Atrial sequential ventricular inhibited page	omakar						
	(D)	Ventricular asynchronous pacemaker	emaker						
	· .	ventricular asynchronous pacemaker							
187.		attery operated pacemakers are safer because							
	(A)	Minimum power is required	<i>,</i>						
	(B)	Maximum power is required	•						
	(C)	Minimum leakage current present							
	DY	Leakage currents are not present and the pa	cemaker can be used without power chord						
188.	In pulse duration modulation, the magnitude of all the pulse remain ———— but the								
		ion of the pulse varies.							
	(A)	increasing (B)	decreasing						
	(0)	constant (D)	∞						
-		173.7							
190	Symol	aro transmitter and receiving is a ————	——— telemetry system.						
100.	CAN								
/	(1)	position (B) motion (C)	force , (D) current						
190	In a-	system the slide wire is rep	laced by a LVDT						
	(A)	Motion balance (B)	Position balance						
4	(C)	Current telemetry (D)	Force balance						
	(0)	Current telemetry (D)	rorce parance						
;									
191.		plitude modulation the bandwidth is	the frequence of message signal.						
	(A)	thrice							
	(C)	same as (D)	fourth times						
192.	In pu	lse telemetry system, the measurement is t	ransmitted in terms of ———— rathe						
	than t	the magnitude of an electrical quantity.							
	(A)	displacement	time .						
	(C)	velocity (D)	acceleration						
		. "							
193	If ~ -	$\sqrt{-1}$, then the value of X^{x} is	. · · · · · ·						
	11 3 =		×						
	(A)	$e^{-\eta/2}$ \mathcal{B} , $e^{\eta/2}$ (C)	x (D) 1						
		5.00							

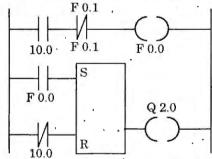
EIE08 . [Turn over

- 194. Which of the following signal is used when a peripheral device request the microprocessor to have a DMA operation?
 - (A) IO/\overline{M}

(B) READY

HOLD and HLDA

- (D) $\overline{R}D$ and $\overline{W}R$
- 195. A single instruction to clear the lower four bits of the accumulator in 8085 assembly language is
 - (A) XRI OFH
- ANI FOH
- (C) XRI FOH
- (D) ANI OFH
- 196. The BCD code for digit is first output from Part B to the 7447.
 - (A)


(Til

- (C) 10
- (D) 11
- 197. The ______ signal in printer indicates that the data character has been accepted and the printer is ready for the next character.
 - (A) · PE
- (B) SLCT
- (C) Busy
- ACKNLG
- - (A) Single handshake

B Double handshake

(C) Triple handshake

- (D) No handshake
- 199. For the ladder diagram shown in figure, when there is an input to 10.0, the output Q 2.0 is

- Comes on and remains on as long as input is available
- (B) Comes on and remains on
- (C) Goes on and remains off for one cycle
- (D) Goes off and remains off
- 200. The following PLC program is

(A) updown counter

- (B) high speed counter
- (C) counter with separate enable
- (D) counter with reset