Sl. No.: 40002121

MI	T	1.1	0	0
U		\mathbf{E}	U	8

Register	P-1		
Number			

2014

CHEMICAL ENGINEERING (Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, your Answer Sheet will not be evaluated.
- 6. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 7. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

A • C D

- 8. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination.

 After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 9. The sheet before the last page of the Question Booklet can be used for Rough Work.
- Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 11. Do not tick-mark or mark the answers in the Question booklet.

SEAL

- 1. If 50 kg of dry solid containing 6% water is obtained by drying 65 kg of wet material, what is the initial moisture content?
 - 27.7%

(B) 77%

(C) 23%

- (D) 21%
- 2. The three phase temperature of a system made up of two immiscible liquids
 - Depends only on the pressure
 - (B) Depends on the amounts of both liquids constituting the system
 - (C) Depends on the pressure as well as the amounts of liquid
 - (D) Is independent of both pressure as well as the amounts present
- 3. The solubility of gases in liquid at a given partial pressure is
 - (A) Directly proportional to Henry's law constant
 - Inversely proportional to Henry's law constant
 - (C) Increases with increasing temperature
 - (D) Not related to Henry's law constant
- 4. Which one of the following is NOT a Maxwell relation?

(A)
$$\left(\frac{\partial P}{\partial S}\right)_{V} = -\left(\frac{\partial T}{\partial V}\right)_{S}$$

$$\left(\frac{\partial V}{\partial T}\right)_{P} = \left(\frac{\partial P}{\partial S}\right)_{V}$$

(C)
$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

(D)
$$\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial S}{\partial P}\right)_{T}$$

- 5. Joule-Thompson coefficient is for an ideal gas.
 - (A) Zero

(B) One

(C) Infinity

(D) Dependent on the value of pressure

- 6. Mollier diagram is a
 - (A) P-V chart

(B) T-S chart

(C) P-H chart

- (D) H-S chart
- 7. Antoine equation is an empirical form obtained from equation.
 - (A) . Charle's

(B) Van der Waals

Clapeyron

(D) Vant-Hoff

8.		ter than unity.	ow is called -	, when the Mach number is
	(A)	Subsonic	(8)	Supersonic
	(C)	Sonic	(D)	Starsonic
9.		in a thin volume immediately tant. This volume is called	adjacent to th	e wall, the velocity gradient is essentially
	COMS	Viscous sublayer	(B)	Transition sublayer
	(C)	Turbulent sublayer	(D)	Velocity sublayer
10.	Friet	ion generated in unseparated l	oundaws lavos	en in called
10.	(A)	Form friction	•	
	(A)	Skin friction	(B) (D)	Fanning friction Boundary friction
11.		ulence that result from cont	tact between	two layers of fluid moving at different
	(A)	forced turbulence	45	free turbulence
,	(C)	transition turbulence	(D)	wall turbulence
12.	In sh	ell and tube heat exchangers, l	baffles are inst	called in the shell side
•	(A)	To promote turbulence	(B)	To promote laminar flow
	(C)	To prevent agitation		To reduce heat transfer
13.	Heat	transfer devices used to liquef	y vapors by re	moving their latent heat are called
	(A)	Air cooled exchangers	(B)	Heaters
		Coolers	` '	Condensers
		•		
14.	The t	total emissive power of a black	body is propor	tional to
	(A)	${f T}^2$	(B)	T^3
•	100	T^4	(D)	T
15.	Ther	mal diffusivity (α) is defined a	ıs	
,	(A)	$\frac{C_P \mu}{V}$	R	$\frac{K}{C}$
		N		$C_{P}\rho$ $C_{P}\rho$
	(C)	<u>~</u>	(D)	$\frac{\sim p_P}{m}$

Sieder - Tate equation for turbulent flow is

(A)
$$N_{Nu} = 0.023(N_{Pe})^{0.8}(N_{pe})^{0.33}$$

$$N_{Nu} = 0.023 (N_{Pe})^{0.8} (N_{pr})^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

(C)
$$N_{Nu} = 0.02(N_{Pe})^{0.8}(N_{pr})^{1/3}$$

(D)
$$N_{Nu} = 0.023 (N_{pr})^{0.8} (N_{Pe})^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

For flow through circular pipe of diameter 'D', length 'L', at a velocity 'v', pressure drop 17. ' ΔP ' due to friction is related to the Fanning friction factor (f) as

(A)
$$\Delta P = \frac{1}{2} \frac{fL\rho v^2}{D}$$

(B)
$$\Delta P = \frac{2fL\rho v^2}{D}$$

(D) $\Delta P = \frac{2fL\rho v^2}{D^2}$

(C)
$$\Delta P = \frac{4fL\rho v^2}{D}$$

(D)
$$\Delta P = \frac{2fL\rho v^2}{D^2}$$

For fluid flow through annulus of concentric pipes of diameters, D_o , D_i $(D_o > D_i)$, the 18. equivalent diameter for fluid flow is given as

$$(A)$$
 $D_o - D_i$.

(B)
$$4(D_o - D_i)$$

(C)
$$D_o + D_i$$

(D)
$$\frac{\pi}{4}(D_o - \dot{D}_i)$$

A solid spherical ball of diameter D and density ρ is floating in a fluid of density ρ_f , with 19. half of the ball submerged inside the fluid. The buoyancy force acting over the ball is equal

(A)
$$\frac{\pi}{3}D^3\rho_f g$$

(B)
$$\frac{\pi}{6}D^3 \rho_f g$$

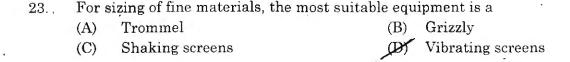
$$\mathcal{D} = \frac{\pi}{12} D^3 \rho_f g$$

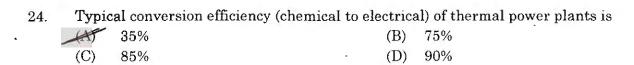
(D)
$$\frac{\pi}{12}D^3 \rho g$$

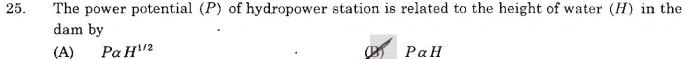
- 20. In a ball mill, the operating speed must be
 - (A) more than critical speed

less than critical speed

(C) equal to critical speed


- independent of critical speed
- 21. Grizzly screens are recommended for separating particles in the size range of
 - 5 50 mm


(B) 10 - 100 mm


(C) $\cdot 15 - 200 \text{ mm}$


(D) 20 - 300 mm

				·		
22.	The equation $E = E_i \sqrt{\frac{100}{L_2}} \left(1 - \frac{1}{q^{1/2}} \right)$, where E	' is	energy required, E	\mathcal{Z}_i is work index,	L_2	is
	size of the product and q is the reduction ratio	o re	presents			
•	(A) Kicks law ((B)	Rittingers law		•	
	(C) Pand'a law	TI	Field low	,		

26. The predominant gaseous constituent of aerobic digestion of biomass is

(A)
$$CH_4$$
 (B) H_2S

(C) CO_2 (D) N_2O

- 27. Heat of combustion of dry wood is about

 (A) 10 kJ/kg

 (C) 100 MJ/kg

 (D) 1000 MJ/kg
- 28. Typical efficiency of commercial solar photovoltaic cell in converting solar energy to electrical energy is

 (B) 40%
 (C) 60%
 (D) 85%
- 29. A filter medium resistance can be expressed by the equation where R_m : filter medium resistance, μ : viscosity of filtrate, u: linear velocity of filtrate and ΔP_m = pressure drop

 (A) $R_m = \frac{\mu u}{\Delta P_m}$

(C)
$$R_m = \frac{\mu \Delta P_m}{u}$$
 . (D) $R_m = \frac{u \Delta P_m}{\mu}$

30.	Mat	ch the	followin	g:			• •	
		Tech	nnique			Developed b	y · · · ·	•
	(a)	HEA	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		· 1.	A.D. Swain a	and HE Guttmann	
*	(b)	THE			2.	J.C. William		
•	· (c)	TES.		•	3.	G.L. Noble D	4	
			igon Pack		4.		and V. Colombari	
•	(d)	Opta	igon rack	age	4.	G.C. Dellow	and v. Colombari	
		(a)	(b)	(c)	(d)		*	
	(4)			1 '			· _	
	(A)	3	4	7	2		,	
-	-45)	2	1	4 .	3	•		
+	(C)	4	3	2	1			
	(D)	. 4	1	2	3			
·								
		'				221	in the second second second	
31.	The			materia	I for ha	ndling dilute si	ulfuric acid (concentration less than 70%) is	S
	-(A)	Lea	d			(B)	Mild steel	
	(C)	Cas	t iron			. (D)	Stainless steel	
	*				•			
'							1,	
32.	Suit	able m	naterial fo	or handl	ing chlo	orine compound	ds is	
	. (A)	Nicl	kel		,	· (B)	Aluminium .	
	(C)	Cop	per ·		4	(D)	Titanium	
		•						
						·		
33.	Pour	baix •	diagrams	represe	ent			
•	(A)	EM	F vs Oxid	lizing po	wer	(5)	EMF vs pH	
	(C)	EM	F vs Acid	ity		(D)	EMF vs Electromotive force	
	[:: E	MF =	potentia	l]				
				-	,			
•								
34.	Dezi	ncifica	ation is co	orrosion	of a bra	ass alloy conta	ining zinc in which the principal product	of
4	corre	osion i	s metalli	c				
	(A)	Cop	per	,		(B)	Zinc ,	
	(C)	Arse	enic			(D)	Antimony	
		٠.			-	'n		•
•				•				
35.	Pres	ence c	of chlorid	es does	not gen	erally cause c	racking of austenitic stainless steels whe	n
	temp	eratu	res are b	elow abo	out			
	(A)	30°	C '			(B)	40° C	
	(0)	50°	C			(D)	60° C	
,	/				-		,	
							Ch	
36.	Selec	ctive c	orrosion	in the gr	rain bou	undaries of a m	netal or alloy without appreciable attack of	n
			or crysta				corrosion.	
	(A)	Inte	rbounda	rv	,	(B)	Intercrystal	
	Ses		rgranula	*		(D)	Intergrain	
	1		0-		,			
ρ	•					7	CHE	
					· -	I ,	[Turn ove	r

37.	The	The hydrogenation of oils in the presence of nickel catalyst is a/an							
	(A)	endothermic reaction	(B)	exothermic reaction					
	(C)	homogeneous reaction	(D)	the reaction does not occur					
38.	Blac	k liquor is concentrated in							
	44	multiple effect evaporators							
	(B)								
	(C)	single effect evaporator							
-	(D)	single effect evaporator combined wi	ith crys	tallizer					
39 .	Cook	ting conditions in Kraft pulp process a	re						
	(A)	(A) time 6 – 12 hrs, temperature 125 – 160° C and pressure 620 – 755 KPa							
	(B)								
	jes	- time $2-5$ hrs, temperature $170-17$	76° C ai	nd pressure 660 – 925 KPa					
	(D)	time $4-8$ hrs, temperature $200-21$	l5° C ai	nd pressure 620 – 825 KPa					
40.	Whic	ch of the following is the characteristic	s of pul	p from sulphatė process?					
	(A)	White colour	(B)	Easy to bleach					
		Weak fibres	BY	Brown colour					
41.	Twin	le super phosphate is obtained by reac	ting nh	oenhata raak with					
, 1 1.	_								
	(A)	Sulfuric acid Hydrochloric acid	(D) ·	Nitric acid					
	, (C)	Hydrocinorie acid	المطلار	Phosphoric acid					
42.	The	The undesirable side reaction in urea production is the formation of							
,	(A)	thio urea	B	biuret					
	(C)	uric acid	(D)	ammonium carbamate					
4 3.	A NI	PK fertilizer is rated as 15-10-15. This	means	that, it contains (wt%)					
	(A)	15% N, 10% P, 15% K		•					
_	_(B)	15% N, 10% P ₂ O ₅ , 15% K ₂ O	•						
	(C)	15% N, 10% P_2O_5 , 15% KCl							
	(D)	15% urea, 10% superphosphate, 15%	ó potas:	sium chloride					
44.	In th	e contact process for the manufacture	of sulf	$\frac{1}{2}$ aric acid, absorption of SO_3 is done using					
	(A)	Water	(B)	Sulfuric acid of 50% concentration					
	(A)	Sulfuric acid of 15% concentration	(B)	Sulfuric acid of 98% concentration					

45.	Majo	or use of butadiene is		
•	(A)	as a plasticiser for unsaturated poly	ester	-
	AB)	in the manufacture of synthetic rub	ber	,
	(C)	as an anti-skinning agent in paint		,
	(D)	for the hydrogenation of oils		
			*	•
46.	Mass	secuite is a terminology used in		(*)
40.	(A)	Paint Industry	(B)	Oil Hydrogenation Industry
-	(C)	Soap Industry	(D)	Sugar Industry
	(0)	Soap industry	(0)	Sugar industry
47.	Soda	ash is produced by		
	(A)	Chamber's process	(B)	Chance process
	(C).	Contact process	: D	Solvay process
48.	Synt	hetic glycerine is produced from		
10.	(A)	Toluene .	(B)	Phenol·
	(C)	Propylene	(D)	Napthalene
			(-)	
			-	
49.		st – order lag process is	17	
	(A)	non self-regulating process	(45)	self-regulating process
	(C)	under damped process	(D)	over damped process
		9		
50.	One	of the most important advantages of P	I contr	ol is the elimination of
	(A)	time delay	(B)	measurement lag
	Lay	offset	(D)	temperature delay
51.	A pro			by its Proportional Band (PB) where,
	_(A)	$PB = 100/K_C$	(B)	
	(C)	$PB = 10/K_C$	(D)	$PB = 1/K_C$
	[·· K	c = proportional gain of the controller] .	*
52.	A +1	hat tamparatura thamamatana	C assis	and of scale show the same numbers
04.	(A)	hat temperature, thermometers with ° -'40°C-	(B)	o°C • same number?
	((1)			
	(C)	100°C	. (D)	0 Kelvin

53. Which of the following instruments show significant time delay in their response?

(A) flow sensors

(B) pressure sensors

(C) temperature sensors

(D) composition sensors

- 54. According to stability analysis, a feed back control system is stable if all the roots of its characteristic equation have
 - (A) positive real parts

(B) negative real parts

(C) zero real parts.

- (D) values equal to 1
- 55. For stability analysis by Routs-Hurwitz criterion, for the system with open loop transfer function GoL, the characteristic equation is written as
 - (A) $1 + G_{OL} = 1$

(B) $1+G_{OL}=0$

(C) $G_{OL} = 0$

(D) $G_{OL} = 1$

56. Identify the wrong statement.

Integral control action

- (A) increases the order of dynamics for a closed loop response
- (B) eliminates any offset
- (C) makes the response of the closed-loop system to more sluggish
- produces non zero offset
- 57. Transfer function of a first order system with dead time td is given by
 - (A) $\frac{K_p}{\tau_p S + 1} + e^{-tds}$

 $\frac{K_p}{\tau_p S + 1} e^{-tds}$

(C) $\frac{K_p}{(\tau_p S + 1) + e^{-tds}}$

- (D) $\frac{K_p}{\tau_p S + 1} e^{tds}$
- 58. A second order system is called over damped if the damping factor (ζ) is
 - (A) greater than 1

(B) equal to 1

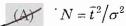
(C) less than 1

- . (D) zero
- 59. Time constant of a first order system is equal to the time taken for the step response to reach ————— of the final value.
 - (A) 50%

(B) 63.2%

(C) 75%

- (D) 100%
- 60. Gain Margin is defined as $\frac{1}{M}$, where M is the amplitude ratio at the cross over frequency. Then for a stable system, Gain Margin is
 - Then for a stable system, Gain Margin is
 - (C) > 1


- (B) < 1
- $(D) \leq 1$

61.	For v	which of the following interest rate,	interest a	amount paid per year will be higher?
	(A)	·10%, compounded annually	(B)	10%, compounded quarterly
	LOY	10%, compounded daily	(D)	10%, compounded monthly
62.	Sym	biotic relationship between bacteria	a and alga	e exists in
	(A),	Ponds	(B)	Lagoons
	(e)	Facultative ponds	(D)	Anaerobic lagoons
63.	The 1	mixed—liquor suspended solids in tl	he reactor	is related to mean cell residence time and
	(A)	Hydraulic detention time *	(B)	Influent concentration
	(C)	Effluent concentration	. (D)	Food to mass ratio
64.	At B	reak – Even Point (BEP) of product	tion,	
4"	(A)	Fixed Cost = Variable Cost	_(B)	Total Cost = Total Revenue
,	(C)	Total Cost = Total Profit	(D)	Variable Cost = Sales
65.	Rate Value		ash flow is	calculated by equating NPV (Net Present
	(A)	Zero	(B)	One
	(C)	Hundred	(D)	Number of years of service
66.		h of the following investment alte	ernative ev	valuation methods does not consider time
	(A)	· Net present value method	(B)	Capitalized cost method
•	100	Payback period	(D)	Payback period with interest
67.		whole process involving separation own as	and bacte	rial conversion of the organic solid wastes
	(A)	Land – filling	(B)	Incineration
	(C)	Composting	(D)	Deep - well injection
68.	Orga	nisms that derive both energy and	nutrients	from inorganic sources are called
	(A)	Heterotrophs	(B)	Phototrophs
	· (C)	Facultative heterotrophs	_BY	Autotrophs
69.	Reco	mmended limit of fluoride in drinki	ng water	according to EPA/WHO standards are
	(A)	0.5 mg/l	CRI	1.5 mg/l
	10-10	-2.0 mg/l	(D)	3.0 mg/l
		,	(2)	

70.	1	rcritical fluid extraction is a process erature above	in whi	ch the solvent is held at a pressure and
	(A)	the triple point temperature		
	(B)	above atmospheric pressure and tem	peratu	re
	(C)	at atmospheric temperature and pre	_	
	(D)	above critical point		
71.	What	t is the major use of carbon molecular	sieves?	
	(A)	Separation of lower hydro-carbons		
	(B)	Adsorption of organics from drinking	g water	
•	(C)	Separation of air to produce N_2	•	•
	(D)	Separation of higher mol. wt hydroc	arbons	
72.		distillation column design, McCa hon–Savarit procedure is needed when		ele procedure is not suitable and
	. (A)	an azeotrope forms	•	
	(B)	a total condenser is used		,
	(C)	saturated feed is not used		
	D	the molar latent heats of two compositions	nents a	re greatly different .
73.		eam distillation of nitrobenzene (nor n, the boiling point of mixture is	mal boi	ling point 210.6°C) at a total pressure of
	(A)	less than 100°C	(B)	100°C
	(C)	between 100°C and 210.6°C	(D)	210.6°C
4				
74.	Absor	rption towers are operated under the	conditio	ons of
	(A)	low pressure, low temperature .	(B)	low pressure, high temperature
	(C)	high pressure, high temperature	(AD)	high pressure, low temperature
	•		2	
75 .	The h	height of a mass transfer equipment ca	an NOI	be calculated by
	(A)	HETP × Number of equivalent stage	·s ·	
	(B)	HTU × NTU		
	(e)	NTU × distance between redistribut	ors	
	(D)	No. of stages x distance between two	stages	
76.		th of the following extractor is valuable	le for th	ne extraction of sensitive products such as
	W	Centrifugal	(B)	Agitated Tower
	(C)	Baffle Tower	(D)	Pulse column
	(0)		(1)	- also column
CHI	E08	1	2	ρ

77.	In a	column tray, the static liquid s	seal of tray is	determined as	T	
	ZAS	weir height				
	(A)	the height of liquid over the	e weir	4		
	-(B)	weir height + the height of li	quid over the	weir ,		
	(C)	weir height - the height of li	quid over the	weir	•	
	4	the height of liquid over th				
	(D)	weir height	•	•		
. 4				1	·	
				•	•	
78.	Ina	tray column, the turndown rat	io is defined a	S		
	(A)	Design vapour throughput -	Minimum ope	erable throughput		
	(Day	Design vapour throughpu	t			
1	(B)	Minimum operable through	put .			
		Minimum operable through		ń 1		
	(C)	Design vapour throughpu				
	(D)					
4	(D)	Minimum operable throughp	ut + design va	ipour throughput	•	
					3	
79.	In a	binary distillation column, if	the feed conta	ins 40 mol% vapor, th	e q-line will have	a
*	slope					
	_(A)	- 1.5	(B)	-0.6		, .
	(C)	0.6	(D)	1.5		
•		12			- 1	
4				The Company		
80.	222	h of the following property is n				1
	(A)	free flowing	(B)	low pressure drop		
	(e)	friable	(D)	large specific surface	area	,
				i i	1	
81.	Iftho	e mass transfer resistance is ve	www.emall.tho.b	wook through line is	-	
OI.	LA CITE	a vertical line	(B)			
,	(C)	a line with unit slope	(D)	a line with unit nega	tivo alono	,
	(0)	a life with difft stope	(D)	a fine with unit nega	ive stope	
F	4			1 4		•
82.	Type	of reaction when the rate of	f a chemical	reaction is affected or	ly by temperatur	e,
		ture and composition is			-	
	(A)	Homogeneous reactions	(B)	Heterogeneous reacti	ons	
_	(C)	Only catalytic heterogeneous	reactions (D)	Non-catalytic gas-so	lid reactions	
83.		anced chemical equation is in		William Control of the Control of th		
	(A)	law of gaseous volumes	(B)	law of Avogadro	· • 5	
	(C)	law of constant proportions	·	law of conservation of	mass.	
	F.	*		ý.,		
84.	In +h	o monation D . O . D if Dia to	lvan in ariasan	than it is an arramala	£	9
04.		e reaction $P+Q \rightarrow R$ if P is ta			и	,
1	(A)	zero order reaction	(B)	first order reaction	in the same of	
	(C)	second order reaction	(45)	pseudo unimolecular	reaction	í.
p .			13	(1)	CHE	18
1			10	1		.0

85. The number of tanks in series representing a non-ideal reactor can be obtained using the following relationship where \bar{t} is the mean residence time and σ^2 is the variance

(B)
$$N = \sigma^2/\bar{t}^2$$

(D) $N = t/\bar{t}^2$

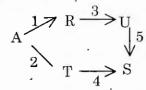
(C)
$$N = \sigma^2$$

(D)
$$N = t/\overline{t}^2$$

- For all positive orders, the volume of a plug flow reactor to the volume of a continuous 86. stirred tank reactor, all other parameters remaining constant is
 - greater than 1

(B) equal to 1

less than 1


- (D) insufficient data
- 87. The mean residence time in an open vessel is given by

(A)
$$\bar{t} = V/V_0$$

(B)
$$\tilde{t} = V/V_0(1-X_A)$$

$$\overline{t} = \frac{V}{V_0} \left[1 + 2 \frac{D}{uL} \right]$$

- (D) $\bar{t} = \frac{V}{V_0} \left[1 + 8 \frac{D}{uL} \right]$
- Consider the following scheme of elementary reactions 88.

- $E_1 = 79 \, \text{kJ/mol}$, $E_2 = 113 \, \text{kJ/mol}$, $E_3 = 126 \, \text{kJ/mol}$, $E_4 = 151 \, \text{kJ/mol}$, $E_5 = 0$. What temperature progression would you recommend if the desired product is T?
- (A) low temperature

(B) high temperature

falling temperature profile

- (D) rising temperature profile
- The tanks in series model for non-ideal flow is a 89.
 - Zero parameter model (A)
- Single parameter model
- (C) Two parameter model
- (D) Multi parameter model
- 90. In a zero order reaction, the rate of the chemical reaction
 - (A) increases with increase of concentration of the reactants
 - decreases with increase in the concentration of the reactants (B) is independent of the concentration of the reactants
 - (D) first increases then decreases with concentration of the reactants

- 91. To fit a curve of the form $y = a + bx + cx^2$ (where a, b, and c are constants) by method of least squares, the number of simultaneous equation to be formed are
 - (A) 2

(B) 3

(C). 4

- (D) 5
- 92. How many prior values are required to predict the next value in Milne's method?
 - (A). No prior values

(B) 2 prior values

(C) 4 prior values

- (D) 6 prior values
- 93. Gregory Newton forward difference interpolation formula is

$$y_n = y_0 + n\Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!} \Delta^3 y_0 + \cdots$$

(B)
$$y_n = y_0 + n\nabla y_0 + \frac{n(n+1)}{2!}\nabla^2 y_0 + \frac{n(n+1)(n+2)}{3!}\nabla^3 y_0 + \cdots$$

(C)
$$y_n = y_0 - n\Delta y_0 + \frac{n(n+1)}{2!}\Delta^2 y_0 - \frac{n(n-1)(n-2)}{3!}\Delta^3 y_0 + \cdots$$

(D)
$$y_n = y_0 - n\nabla y_0 + \frac{n(n-1)}{2!}\nabla^2 y_0 - \frac{n(n-1)(n-2)}{3}\nabla^3 y_0 + \dots$$

- 94. The Stirlings formula is
 - (A) Gauss's backward Interpolation formula
 - (B) Gauss's elimination formula
 - (C) Gauss's forward interpolation formula
 - The mean of Gauss's forward and backward interpolation formula
- 95. What is the disadvantages of using Lagrange interpolation formula?
 - (A) Complicated
 - (B) Difficult
 - Takes a long time
 - (D) Cannot be used for unequally spaced data

96.	Numerical solution of ordinary differential equation of bo	oundary value type is given by
		•

- (A) Milne's predictor corrector method(B) Runge–Kutta method
- (e) Shooting method
- (D) Euler's method

97. The condition for convergence for the Newton-Raphson method is

(A) $|f''(x)|^2 < |f'(x).f(x)|$

(B) $|f(x)f''(x)| < |f'(x)|^2$

(C) $|f(x)|^2 < |f'(x).f''(x)|$

(D) $|f(x)f'(x)| < |f''(x)|^2$

linear

(B) quadratic

(C) very slow

(D) cubic

(A) Diagonal matrix

(B) Upper triangular matrix

(C) No transformation

(D) Inverse of the matrix

- (A) · Direct method
- (B) Indirect method
- (C) Coefficient matrix is transformed into diagonal matrix
- (D) No need for back substitution

101. Iteration methods are

(A) Self-correcting method

- (B) Round off error is large
- (C) Direct method
- (D) Coefficient of matrix should be upper triangular dominant

102.	Purg	ang operation is performed on rec	ycie stream	s for
	(A)	Increasing the yield	(8)	Reducing the accumulation of inerts
•	(C)	Conserving heat .	(D)	Improving efficiency
103.	Δααιι	ming CO chave the perfect gas	law calcu	late the density of CO_2 in kilograms per
100.		metre at 540 k and 202 kPa.	iaw, caicu	
	(A)	1 .	B	2
	(C)	3	(D)	4
104.		increase in the molecular weight given temperature	t the vapou	r pressure of chemically similar liquids at
•	(A)	Increases	. (8)	Decreases
	(C)	Remains unchanged	(D)	May increase or decrease
105.	Idon	solution obeys		• ,
100.	(A)	Boyle's law	(B)	Amagats law
	(CX	Raoults law	(D)	Charles law
		IMOUIUS IAW	(13)	·
106.	temp		=	temperature of 303 K and wet bulb constant pressure to 333 K. The wet bulb
	(A)	constant at 293 K	(B)	less than 293 K
	JOY	greater than 293 K	(D)	equal to 333 K
107.	Ata	specified temperature the molal h	umidity at	saturation
•	(A)	Depends on pressure but is inde		
-	(B)	Independent of pressure and pro	_	
	(C)	Depends on the properties of the	_	,
	(D)	Depends on the properties of the	e gas and th	ne total pressure
				,
108.	The e	enthalpy of a gas-vapour mixture	can be incre	eased by
	(A)	Increasing the humidity and dec	reasing the	e temperature
	(B)	Increasing the humidity and ten	nperature	
	(C)	Decreasing the humidity and inc	creasing the	e temperature
	(D)	Decreasing both temperature ar	ıd humidity	
			,	

109.	One	ton of refrigeration is equal to		
	(A)	50 kJ/min	æ	50 kCal/min
	(C)	1000 kCal/hr	(D)	4184 kJ/min
,	, CI			
110.		eyron equation is used to predict the		•
	(A)	Density	(B)	Specific gravity
		Temperature	(D)	Pressure
,111.		pressure – temperature phase urization curve meets at	diagram	of a pure substance, the fusion and
	(A)	Sublimation point	D	Triple point
	(C)	Vapourization point	(D)	Critical point
-				
112.	The 1	mean compressibility factor is a fund	ction of	
	(A)	Pressure and temperature	(B)	Temperature and composition
	(C)	Pressure and composition	Jan Jan	Pressure, temperature and composition
113.	The	number of moles of a substance can	he determ	nined by finding the ratio of
		Volumes in litres	1	Mass in grams
•	(A)	Mass in grams	(B)	Molecular weight
,	(C)	Molecular weight Mass in grams	(D)	Number of grams Mass in grams
114.	The	molarity of water in pure water is		
	(A)	1	(B)	18
	JES .	55.55	(D).	Infinity
115.	The e	effect of air pollution on rubber is		
	M	Cracking	(B)	Discoloration
	(C)	Embrittlement	(D)	Tarnishing
110	mi	dimension les constitues (1977)	noutest.	
116.		dimensionless number especially im	portant ir	
	(A)	Power number	(B)	Froude number
	(C)	Sherwood number	(D)	Reynolds number
CHE	08		18	

- 117. Both the resistance and conductance of steady state conduction depends upon the dimensions of the solid as well as the property of the material. Which of the following property influences the steady state conduction?
 - (A) Density

(B) Thermal conductivity

(C) Mass

- (D) Viscosity
- 118. For laminar flow through a circular pipe of diameter D, the maximum velocity is observed at which radial position (r) from the centreline of pipe? (For a Newtonian Fluid)
 - r=0

(B) $r = \frac{D}{2}$

 $r = \frac{D}{4}$

- (D) $r = \frac{D}{3}$
- 119. In centrifugal pumps, cavitation occurs when the pressure inside the impeller becomes
 - (A) Less than atmospheric pressure
 - (B) More than atmospheric pressure
 - Less than liquid vapor pressure
 - (D) Much higher than liquid vapor pressure
- 120. A solid particle falling in a fluid attains its terminal settling velocity when
 - (A) Gravity force + drag force = buoyancy force
 - Gravity drag force = buoyancy force
 - (C) Buoyancy drag force = gravity force
 - (D) Drag force = buoyancy force
- 121. The most commonly used pump in chemical industries is
 - (A) Diaphragm pump

(B) Reciprocating pump

(C) Gear pump

- (P) Centrifugal pump
- 122. Stanton number is defined by
 - (A) $N_{st} = \frac{C_p G}{h}$

 $N_{st} = \frac{h}{C_p G}$

(C) $N_{st} = \frac{C_p}{hG}$

(D) $N_{st} = \frac{G}{hC_n}$

123.	3. For handling toxic and flammable liquid (filtrate), the recommended filter is			
	(A)	Leaf filter	(B)	Disc filter
	(C)	Drum filter	(D)	Filter press
124.	The I		in powe	er calculation, when the Reynolds number
	(A)	less than 100		less than 300
	(C)	less than 1000	(D)	less than 2200
125.	Upto	what horizontal length can a screw of	onveyo	r be used?
	LAY	40 m	(B)	60 m
,	(C)	70 m	(D)	50 m
126.	In ba	affled tanks at Reynolds numbers of the Reynolds number.	larger t	than about 10,000, the power number is
٠	(A)	dependent	(B)	same as
	JOY -	independent	(D)	twice that of
127.		centrifugal separators for removing parts. two no	(B)	many required
128.		rential settling methods utilize the desen substances of different density.	ifferenc	e in ———— velocities that can exist
	(A)	fluidization	. (B)	settling
	(C)	average	(D)	terminal
				•
129.	Size r	reduction equipments which can acce	pt the n	naximum feed size is
	(A) .	Tube mill	(B)	Ball mill .
	(C)	Jaw crusher	(D)	. Jet pulveriser
130.	Maxi	mum size reduction in a fluid energy	mill is	achieved by
	(A)	Compression	(B)	Interparticle attrition
	(C)	Culting	(D)	Impact
CHE	08		20	ρ

131.	Devi	Devices that separate particles of differing densities are known as					
	(A)	Thickeners	(B)	Sorting classifiers			
-	(C)	Clarifiers	(D)	Filters			
132.	Whic	ch type of solids has a higher value of	interna	l friction?			
. : '	(A)	Clay	· (B)	Granular solids			
: ,	(e)	Cohesive solids	(D)	Non-cohesive solids			
133.	Whic	ch type of flow is seen in case of flow	of wheat	grain from a storage bin?			
	(A)	Mass flow	(B)	Funnel flow			
	(C)	Frictional flow	(D)	Compressible flow			
134.	Electrical interference due to microphonic effects causes environmental stress to the equipment that leads to						
	(A)	Acoustic noise	(B).	Electromagnetic radiation			
	(C) ·	Thermal shock	(D)	Vibration.			
.135.	ALAI	RP study means					
	LAY	as low as reasonably practicable					
	(B)	as low as resistive practice					
	(C)	as low as reactive persistance					
4	(D)	as low as reasonably persistance					
136.	Fault tree analysis involves — logical possibilities and — m symbols.						
	(A)	1 and 3	(B)	2 and 3			
	JES .	· 3 and 2	(D)	3 and 1			
ŕ							
137.	The amount of moisture in a solid that exerts a vapour pressure less than the normal vapour pressure, of water at the given temperature is called						
	(A)	Bound moisture	(B)	Unbound moisture			
	(C)	Equilibrium moisture	(D)	Free moisture			
•							

138.	Galvanic corrosion can be prevented by			— the metals from each other.			
	(A)	separating	(B)	insulating			
	(C)	bolting	(D)	coupling			
139.	The ı		e 50) is				
	(A)	mg/litre .	(B)	mL/m³			
	(0)	mg/kg	(D)	mg/m³			
140.		Flammability limit of acetone in air is given as $2.6 - 13\%$ (v/v). This indicates that burning of acetone is spontaneous, if					
		(A) concentration of acetone in air is less than 2.6%					
	(B)						
	(e)	concentration of acetone in air is between 2.6 and 13%					
	(D)	concentration of acetone in air is not	t betwe	en 2.6 and 13%			
141.	For p	oreparing dilute sulfuric acid safely, ir	the la	boratory			
	(4)	add Conc. H ₂ SO ₄ slowly to cold wat	er (B)	add cold water to the Conc. H ₂ SO ₄			
	.(C)	mix SO ₃ with water	(D)	burn sulfur to SO_3 and add water			
142.	"Like	ely to occur sometime during life of an	item" ı	nishan comes under			
	(A)	Frequent description	(BY	Occasional description			
	(C)	Probable description	(D)	Remote description			
143.	Deat	; h or system loss mishap is categorized	l under				
777	(A)	Catastrophic description	(B)	Critical description			
-	(C)	Fatal description	(D)	Deadly description			
144.	A cat	tegorical description of hazard level	based o	on real or perceived potential for causing			
	horm, injury and/or damage is called						
	(A)	hazard description	(B)	hazard probability			
	10	hazard severity	(D)	hazard categorization			
145.	Mark	ov model is a mathematical model us	ed in				
-	(A)	reliability analysis	(B)	dosage analysis			
	(C)	probability analysis	(D)	numerical analysis			
	N .						
146.		rials that possess oxidizing properties	s snall b				
	(A)	OP .	(B)	OZ			
	(C)	OD .	Jan	OX .			
				•			

147.	20%	oleum is				
	(A)	20 kg of SO ₃ in 100 kg of H ₂ SO.	$_{4} + SO_{3}$			
* *	(B)	20 kg of H ₂ SO ₄ in 100 kg of H ₂ S	$SO_4 + SO_3$,	•	
	(C)	20 kg of H ₂ SO ₄ in 100 kg of H ₂ S	$SO_4 + H_2O$	1		
	(D)	20 kg of SO ₂ in 100 kg of H ₂ SO ₂	$+SO_2$	•		
			4			
140	Λ				70 1000C	
. 148.		nonia and CO_2 are compressed a clave to form	ind reacted		170 – 190°C an	
	(A)	Ammonium carbonate	(B)	Ammonium carbamate	1.00	
	(C)	Ammonium bicarbonate	(D)	Biuret		
•			,	1		
149.	Mela	amine is synthesized by		S		
	(A)	Condensation of Ammonia	· (B)	Condensation of Urea	•	
	(C)	Evaporation of Ammonia	(D)	Evaporation of Urea		
		E 1-				
150.		ch component is responsible for the s and the fibrous material of plant		ent of the starches of Potato	es, the sugar of	
•	(A)	Calcium	(B)	Potassium	•	
;	(C)	Magnesium	(D)	Vanadium	•	
151.		ch component is responsible for lopment of stems and leaves? Calcium Potassium	the early (D)	Nitrogen Magnesium	o promote the	
152.	The promotor used for the production of sulfuric acid is					
	(A) Acid and metallic compounds in trace					
	Alkali and/or metallic compounds in trace					
٠	(C) Nitric acid with metallic compounds in trace					
	(D)	Hydrochloric acid with metallic o	compounds	in trace	•	
•					1	
153.	Most	widely used catalyst for sulfuric a	cid produc	tion is	2	
	(A)	Hydrogen peroxide	(B)	Vanadium pentoxide		
	(C)	Phosphorus pentoxide	(D)	Lithium oxide		
			. *		• •	
154.	Mole	cular weight of sulfuric acid is			1	
	A	98.08	(B)	94.08	1	
	(C)	90.28	(D)	98.48		
0	•		99	•	CHEOS	

[Turn over

155.	Variation of velocity with the radial position of a pipeline can be measured with			
7	(A) -(C)	orifice meter pitot tube	(B) (D)	venturi meter rotameter
156.		etermine the relative humidity of erature is/are:	a gas	mixture, the required measurements of
	(A) (C)	dry bulb temperature dew point temperature	(B)	wet bulb temperature both dry and wet bulb temperatures
157.	Step	response of a second order system wil	l show	overshoot if its damping factor (ζ) is
	(A) (C)	equal to 1 greater than 1	(B)	less than 1 equal to infinity
158.	Trans	sfer function of a PID controller is giv	en by	<i>2</i> *
_	(A)	$K_{C}\left(1+rac{1}{ au_{I}S}+ au_{D}S ight)$	(B)	$K_C(1+ au_IS+ au_DS)$
	(C)	$K_{C}\left(1+\frac{S}{\tau_{I}}+\tau_{D}S\right)$	(D)	$K_{C}\left(S + \frac{S}{\tau_{I}} + \tau_{D}S\right)$
159.		oportional controller with a gain of will increase if	K_C is	used to control a first order process. The
_	(A)	$K_{oldsymbol{c}}$ is reduced	(B)	K_C is increased
	(C)	Integral control action is introduced	(D)	Derivative control action is introduced
160.	Trans	sfer function of a second order system	is give	on as $\frac{1}{s^2 + 2s + 1}$. The system response
	(A) (C)	is over damped is under damped	(B)	is critically damped cannot be predicted
161.	ampl	= · · · · · · · · · · · · · · · · · · ·		back control system is unstable if the transfer functions is — at the
	(A) (C)	larger than 1 less than 1	(B) (D)	equal to zero equal to 1
162.	Frequ	uency response of a pure-capacitive p	rocess]	has a phase shift of
	(A)	0° -90°	(B) (D)	45° ∞ '
CHE	08		4	ρ

- Match the following, in the analysis of multi variable equations, where N_V = Number of variables, and N_E = Number of equations
 - (a) $N_V = N_E$
- 1. under defined
- (b) $N_V > N_E$
- 2. exactly defined
- (c) $N_V < N_E$
- 3. over defined
- (a)
- (b) (c
- (A) 1
- 2
- (B) 2
- } '
- (C) 3
- 1
- (B) 2
- 1
- 164. Temperature change due to altitude gain is referred to
 - (A) Adiabatic lapse rate

(B) Adiabatic gain rate

(C) Ambient lapse rate

- (D) Ambient gain rate
- 165. The length of the cone for cyclone separators according to standard design is
 - (A) L = 2D

(B) L = D

(C) L = 3D

- (D) L = 1/2 D
- 166. Effective stack height includes stack height physically along with
 - (A) Stack gas velocity

(B) Stack diameter

(C) Wind speed

- Plume rise
- 167. The dispersion of stack gas takes a horizontal pathway when there is stable air condition, this is called as
 - (A) looping plume

(B) neutral plume

(C) coning

- (D) fanning
- 168. For which of the following item, depreciation calculation is not done?
 - (A) computers

(B) land

(C) electrical motors

- (D) automobiles
- 169. By compound interest, calculation of Future Worth (F), for a given Present Worth (P) and interest rate per year of i, for a period of n-years, is done by
 - (A) F = P(1+in)

 $F = P(1+i)^n$

(C) $F = \frac{P}{(1+i)^n}$

(D) $F = \frac{P}{(1+in)}$

170. Alkalinity imparts — taste in water.

(A) Tangy

(B) Bitter

(C) Sweet.

(D) Foul

171. Quantitative assessment of risk (Q) is related to the frequency of incident (F) and loss per incident (L), as

(A) Q = F + L

(B) Q = F/L

 $Q = \dot{F} \times L$

 $\cdot \quad \text{(D)} \quad Q = F^2 \times L$

172. Which of the following IS code is used in design of pressure vessels is

(A) IS 803

(B) IS 1239

(C) IS 2002

D IS 2825

173. Cost of a blower in the year 2000 was Rs. 1,00,000/-. What will be the cost of a blower of the same capacity in 2014? The cost index for the blower in 2000 and 2014 respectively is 200 and 300.

(A) Rs. 2,00,000

Rs. 1,50,000

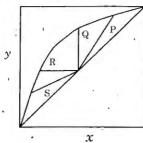
(C) Rs. 1,40,000

(D) Rs. 2,40,000

174. Distribution coefficient is defined as the ratio of

- (A) the concentration of solute in raffinate to that in extract
- the concentration of solute in extract to that in raffinate
- (C) the concentration of solvent in raffinate to that in extract
- (D) the concentration of solvent in extract to that in raffinate

175. Hollow fiber membranes are made by


- (A) Solution precipitation technique
- Film stretching technique
- (C) Track etching technique
- (D) · Etching technique

176. The overall material balance equation used in absorption column can be given as

- (A) $G_S(Y_1 Y_2) = L_S(X_1 + X_2)$
- $G_S(Y_2 Y_1) = L_S(X_1 X_2)$
- (C) $G_S(Y_1/Y_2) = L_S(X_1/X_2)$

(D) $G_S(Y_2/Y_1) = L_S(X_2/X_1)$

177: Match the feed line as given in the diagram to the type of feed, as below:

Type of feed line

Type of feed

- 'P -' slope greater than 1
- I. saturated liquid

Q - vertical line

II. saturated vapor

R - horizontal line

- III. liquid below bubble point
- S slope less than 1
- IV. superheated vapor .
- (A) P I, Q II, R III, S IV
- (B) P-III, Q-I, R-II, S-IV
- (C) P II, Q III, R I, S IV
- (D) P IV, Q II, R I, S III
- 178. Entropy change for adsorption is
 - (A) Negative

(B) Positive

(C) Zero

- (D) Uncertain
- 179. A adsorbent adsorbate pair exhibits an unfavourable isotherm. When such abed, loaded with the adsorbent is regenerated the depth of the MTZ will
 - (A) increase with time
 - decrease with time
 - (C) increase initially then decrease with time
 - (D) remain unchanged
- 180. In a distillation column, the section of the column above the feed tray is called the
 - (A) Stripping section

(B) Rectifying section

(C) Feed section

- (D) Reboiler section
- 181. The active tray area is determined by
 - (A) allowable liquid velocity allowable gas velocity

the gas flow rate allowable gas velocity

(C) allowable gas velocity the gas flow rate

 $(D) \quad \frac{\text{allowable gas velocity}}{\text{allowable liquid velocity}}$

- Conversion increases with increase in temperature for
 - auto catalytic reaction

(B) irreversible reaction

- - reversible endothermic reaction
- reversible exothermic reaction (D)
- 183. For the irreversible unimolecular reaction of type first order $A \xrightarrow{k}$ products a plot of $-\ln(1-X_A)$ as t gives a straight line passing through the origin whose slope is

- (D) -1/K
- The half life period of the reaction $A \xrightarrow{k}$ products is independent of the initial 184. concentration of reactant A if order of the reaction is
 - (A)

(C) 2

- 185. For the consecutive unimolecular type first order reaction. $A \xrightarrow{k_1} R \xrightarrow{k_2} S$, the concentration of component A, (C_A) at any time t is equal to
 - $C_{AO}e^{(k_1+k_2)t}$ (A)

(B) $C_{AO} e^{-(k_1+k_2)k}$

 $C_{AO}e^{-k_1t}$

- (D) $C_{AO} e^{k_1 t}$
- In a ideal mixed flow reactor at steady state 186.
 - (A) the rate of the reaction varies with time
 - (B) composition through the reactor varies with time
 - the concentration of the reactant inside the reactor and the exit vary (C)
 - space time and holding time are the same for constant density systems
- 187. The exit age distribution E(t) for an ideal CSTR is given as
 - (A) $E(t) = (1 e^{-t/\overline{t}})$

$$E(t) = \frac{1}{\overline{t}}e^{-t/\overline{t}}$$

- (D) $E(t) = k(1 e^{-t/\overline{t}})$
- The expression C_A/C_{AO} for a zero order reaction of a Newtonian fluid in laminar flow in a 188. tubular reactor is
 - $C_A/C_{AO} = 1 e^{-kt}$ (A)

(B) $C_A/C_{AO} = e^{-kt}$

$$C_A/C_{AO} = \left(1 - \frac{k\bar{t}}{2C_{AO}}\right)^2$$

(D)
$$C_A/C_{AO} = 1 - \frac{k\bar{t}}{C_{AO}}$$

189.	The	most suitable reactor for carrying	out an isot	hermal operation continuously is	
	(A)	Batch reactor	(B)	CSTR	
•	(C)	Semi-batch reactor	(D)	Plug flow reactor	
	,				
190.	In a	constant volume system the me	easure of 1	reaction rate of component i is given by	
7	$r_i = \frac{1}{7}$	$\frac{1}{V}\frac{dM_i}{dt} = \frac{dCi}{dt}$. For ideal gases at co	onstant ten	nperature T , r_i is equal to	
	(A)	dp_i/dt	BY	$1/RT.dp_i/dt$	
	(C)	$RT dp_i/dt$	(D)	$1/RT.dp_i/dt$ $rac{R}{T}dp_i/dt$	
<u></u>	•		•		
191.	Indep	pendent variable for a batch reacto	or with uni	form concentration and temperature is	
	A	time	(B)	volume of the reactor	
	(C)	diameter of the reactor	(D)	agitator speed	
192.	is alw	vays		$A \xrightarrow{k_1} R \xrightarrow{k_2} S$ the fractional yield of R	
.*	(A) same in PFR and CSTR for a given conversion of A				
,	(B)	lower in PFR than for CSTR for	any conver	sion of A	
_	(0)	higher in PFR than in CSTR for	any conver	sion of A	
-	(D)	same in batch and CSTR for a gi	ven conver	sion of A .	
				• •	
193.	The o	order of convergence for fixed point	t iteration i	method is	
	(A)	0	(8)	1	
_	(C)	2	(D)	3	
•	•				
	•		Γ1 2 1		
194.	Deter	minant of the matrix given below	is 1 2 1		
			1 0 2	2	

(C)

(B)

(D)

11

- The largest eigen value of the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ using power method is 195.

(B)

- (D)
- To fit a curve between y and x, by method of group averages, of the form y = mx + c, where m and c are constants, number of groups to be made are:
 - (A)

(C) 3

- (T) $\cdot 4$
- To solve a non-linear equation f(x) = 0, by Newton-Raphson method, the iteration formula is written as
 - $x_{n+2} = x_n \frac{x_{n+1} x_n}{f(x_{n+1}) f(x_n)} f(x_n)$ $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$

(C) $x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$

- (D) $x_{n+1} = x_{n-1} \frac{f(x_n)}{f'(x_n)}$
- An example of predictor-corrector method of solving ordinary differential equation is 198.
 - Euler's method (A)

Runge-Kutta's method

Picard's method (C)

- B) Milne's method
- 199. A set of simultaneous differential equation is called as a stiff equation, if the rates of changes of different dependent variables are
 - nearly the same

equal to one another

significantly different

- (D)
- A linear partial differential equation is given as 200.

$$A(x,y)\frac{\partial^2 u}{\partial x^2} + B(x,y)\frac{\partial^2 u}{\partial x \partial y} + C(x,y)\frac{\partial^2 u}{\partial y^2} + F\left(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\right) = 0.$$

The criteria to verify the above equation to be parabolic is.

$$(A) B^2 - 4AC < 0$$

$$B^2 - 4AC = 0$$

(C)
$$B^2 - 4AC > 0$$

(D)
$$B^2 - 4AC = 1$$